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fiy i S\ AR R P AR & KEEEE ( Pelton turbine )

< .
(impulse turbine) | BEIR K#EEE ( cross-flow turbine)
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EMA (mixed-flow)

— B KB (Francis turbine )
FHRE X (diagonal -flow)

— Z R KW (Deriaz turbine )
s (axial-flow)

— R W K8 (Kaplan turbine )

REKEE (propeller turbine )
RA¥M, ( pump turbine )
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(reaction turbine)
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Pressure

Pressure Distribution and Velocity on Impeller






pumps: (a) radial-flow for
d-flow; (c) axial-flow




Meshed Impeller Model

Volute CAD Geometry Meshed Volute Model




Water turbine
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Wind Turbine

HORIZONTAL AXIS LIFT FORCES

High speed fow speed picycle typ
singlesdovble/three-biaded muylti-bladed

contra rotabing Fletiner sail wing
doulife rotor

prnaumatic gear
Enfleld-Andreau

muitirofor

WIND

wpwind vane downwind towing rofors
sidewhasl

VERTICAL AXIS LIFT FORCES

giramill

uncenfired vortex

coRrfined vortex sunlight thermal towar

tormado typ



Wind Turbine

ADVANCED WIND TURBINE FOR MULTI-MEGAWATT POWER GENERATION



Wind Turbine CFD Simulation Analysis




Velocity contours behind one turbine show the wake effect on a second, smaller turbine
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CFD in Rotary Screw Compressor
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Axial-Centrifugal-Flow Compressor
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Centrifugal compressors for large refrigeration circuits Axial compressor for air separation
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Classtification

Compressors' and pumps Turbine
| |
Extended Enclosed Extended Enclosed
| i
Axial Radial Mixed Axial Radial Mixed

FLOW

Examples of Fluids Used
|
Gas or Vapour Liquid
Air, Argon, Neon, Helium, Freon, Steam Water, Cryogenic liquids ( O,, H,, F,, NH,, etc)
Hydrocarbon gas, etc. Hydrocarbon fuels, Slurry ( two phase liquid/solid

mixture ) , Blood, Potassium, Mercury, etc.

Figure 1.1  Classification of turbomachinery.



GENERAL RELATIONS FOR TURBOMACHINES

Euler’s Turbomachinery Equation
Y My, =4} plr x V)V - dA)
Cs

I S |« the angular-momentum term (r x V),

| | '

| : |

| :

| ( | V=1L + ity +i_v,
I

| \

2 _ !: ,L~ _

; I / r= lrr

I I

| |

| | (r x V). = ry,
I

Control volume for a turbomachine. . .
Oghare = — ” prog dQ + “‘ prvg dQ

inlet outlet

Cahate = — (01V6)1 H dQ + (prvy), ” do

inlet outlet



Euler’s turbomachinery equation
valid for compressible flow

T;shnft = (prve)z Qoutlet - (prvﬂ)l Qinlet

Integrating the flow rates over the inlet and outlet,
m = P Qinlet = P2 Qoutlel
Bshaf! = m[("”e)z - (’”Ue)l]

The shaft power T .., 1s

Tshatt = Csnare Q2 = M (rvg)2 — (rvg), ]

where Q is the angular velocity of the turbomachine. Positive power means that P>0 f
the angular momentum of the flow has been increased, (rvg), > (rvy);. A pump >0 Tor pump

increases the angular momentum of the flow passing through it. A turbine P<0 for turbine
decreases the angular momentum of the flow, and the shaft power is negative.



The ideal total head change of the flow, i.e., neglecting any mechanical energy
losses due to friction, 1s

Ferarr &2
(5;‘:)142: ;gr = E[(”’e)z — ("Uﬂ)l]

—_ Uz UBZ T Ul Uﬂl
g

the speed of the rotating surface U at any radial location r
U=rQ
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U'=RQ

Velocity relations for flow through a centrifugal-pump impeller.and Axial-flow COmMpressor.



Velocity Triangles

V=U+W

{a) (&)



Free-Vortex Flow

Some turbomachines have regions which contain no surfaces but in which the
flow changes radius. Even though there are no surfaces to exert torques on the
flow and change its tangential velocity, the change in radius, by itself, causes

the tangential velocity to change.

Biati = T My, = (e x V)V + dA) = 0
Cs

—

__,.-l—"_—l-____

e pér ve + 3— {pQrv., Mdr

/D‘, -~ : \“\\.\ \ “PQ(FUQ) + pQ(ruﬂ) + dir[pg(mg)] dr =0

d
o ,14) ) ' 5 (rvg) =0 or rvy = const

' \ \\ \\ —_— k 4 / /
N \\\R‘_H__ﬁ,z;’j;w | vy adlr|
\\h“"-.._ —

~— - This _tangential'velocity variation with radius is called free- vortex flow.

Control volume for free-vortex flow.



Bernoulli Equation for a Turbomachine
be used to obtain the ideal static-pressure change in a turbomachine.

2 p Vs
Pr L 14 (Ah =% 4+ =
+ + ( r)l 2 0g 2g

_.|..
pg 29 g pg 29

—_—— e

The law of cosines 5 ) )
Ve=W*+U*—-2WU cos B

vg=Vcosa=U— Wcos 8 ‘Z\\ RN
| 1 V.
0 iLVrl A1) l o o, i 2 5 N
Exit ‘

i

V2=W?+ U? - 2U(U — vy) ntrance

p—p Wi-Wi U3-U?
Py 29 2g

=0

the ideal (no friction) static-pressure change for an incom-pressible flow through a turbomachine.



the axial velocity be nearly constant
Single stage

A ull
Stator of
_previous stage Rotor Stator

| The rotor speed at 1 and 2

/ R U =U,=U=RQ

2

3 the head change across the rotor

V U
vi.z ﬁl”h (Ahl]l"‘z = -g_(uﬂﬁ o Uﬂl}

the velocity triangles

— Uﬂ: - Uﬂ

if

~
-~

5
1 3 Ug

Vg, = U, COL o,
Figure 12.10 Stage velocity triangles.
Vg, = U — v, cot B,

B~ B

the total head change across the stage

~ Y oy = oy U2 Ly
ay X o 373 (Mfr)l*z:_é“ I—E(cutﬁz+cnt:tl)



head coefficient ¥ = g(Ah)~2/U* a measure of the total head change

- a measure of the flow rate.
capacity coefficient ® = v,/U

2
(Ah,), -, —% [l — -U—(cut B + cot 11)’

U

VY =1-—(cot B, + cot o, )

Q

\ cot §, + cota; <O
cot By + cota; =0

\Pump .

\ operation

0

Turbme /(LO[,GZ + cot @ 1)

operailon

I

Figure 12.11 Ideal characteristic curve for an axial-flow turbomachine.

g(An) ., [U?

¥

otf, + cota; >0

¥ 1s positive for pumps since they increase the head of the flow, (Ah,),., > 0;
¥ is negative for turbines since they extract work from the flow and decrease the
head, (Ah,),., <O.



Lr*;hal' t Q

(Ah) ~, = g E[("Ue)z — (rvg)s]
U? |
Ah){ay = — l——(cot B, + cot «,
9
él 2 vU __L_I_ (1 + cot §, tan al)} power coefficient,
P U(h 0 U
,§ l+cot {322 tan oq /
N 0 “U/Val
l+cot By tan o
1 + cot B, tan 2
()

Ulvg, < 1 + cot f, tan a, #/pQuZ, < O turbine operation

U/vg, > 1 + cot B, tan oy f/pQuj, > 0 pump operation

Ulv,, =_%(1 + cot B, tan f;‘l)- P=Pmax



Bernoulli’s equation

=0
» Py Zg 2g

Ul—_-Uz

the static pressure change across the rotor

» P2 — p1 = 3p(Wi — W2)

because vy, > v,, and U, = U,,

W, > W, P —pP1 >0



Stator of
M_previous stage

Single stage

~

Rotor

91

MANNY

U=RQ

Figure 12.10 Stage velocity triangles.

Stator

|

The stator is stationary, U =0,
no work 1s done on the flow.

Py n Vi n U,vp, — Uy vy, _ P2 V%_
3~ pg 2 g pg 29

ﬁaa}lﬂ,} » D3 —Pp,= :%ﬂ(Vi -, V%]

_Q\Vﬁ}lﬁ

Py —p, >0

the pressure rises across the stator. The stator acts as a diffuser.



Centrifugal Turbomachines

'I"he flow through a centrifugal turbomachine is primarily in the radial direc-
tion? _outward for a pump and usually inward for a turbine.

centrifugal pump




/ﬂ e the head change across the blades is

(5h[)l—r2 = Uz Uﬂz _ %}El

q
o U, U,

g g

(U, ~ v, cot B,)

the volume tlow rate Q
Figure 12.21 Velocity triangle for

centrifugal turbomachine. Q = 2?5sz U,y

b, is the width of the tip of the impeller.



The capacity coefficient for a centrifugal turbomachine is
u 0
U, 2nR*,Q
he:ad::aeﬁ‘icient Y = g(Ah);./U%=1— @ cot j,

[deal characteristic curve for centrifugal turbomachine.
OO OO
R Q\\R N\ \ SO\ By > 90° (forward-curved)
AN N
\ \\\:\\\ . \& \ \\\_\\
i . ‘\‘\‘\. < "'.\\\
o N ﬁ\\ﬁ\iﬁk N Q§>\ S

>, = 90° (radial)
L

ﬁ | Pump
% | operation \\
b
-:-0*37>'>/ 7
VS P
7 Turbine /

v operation”
s y,

V//



(a) (b) (¢)

Figure 12.23 Types of blade-tip curvature: (a) backward-curved blades, g, < 90°; (b) radial blades,
B, = 90°; forward-curved blades, f, > 90°,



12.3 BLADE-ELEMENT THEORY

Section 12.2 analyzed turbomachinery performance assuming that the flow takes
place between infinitesimally spaced and infinitesimally thin blades and vanes.

In this section we consider the opposite limiting case, that of flow over blades

so widely spaced that there is negligible interaction between the flows over neigh-
boring blades; each blade acts ' irfoi

the lift and drag forces on
Blade-element control volume.

dL = C 3pWicdr

dD = CploW3c dr

Blade-element control volume. c 1s the chord of the airfoil section.

The force of the blade acting on the control volume in the tangential direction is

dFBj'C'\"' = dL Sin ﬁl + dD COs ﬁl = (CL Sin ﬁl + Cu COs ﬁl}%pW%C dr
The force of the blade acting on the control volume in the taxial direction

dFg,cy, = dL cos fi; — dD sin i, = (C, cos f; — Cp sin 8, 3pW3c dr



The total head and static-pressure change across the blades

Pump: the total head increases with the tangential force and the static
pressure(p,-p,) rises with the axial force.

By momentum equation to the control volume in the axial or Z direction

ndFgcy, + (py — p2)2nr dr = M{— Ug,) PYar = Va,

@ static-pressure change across the blades

ndF
Dp, — Py =(Ap)yoy = ——

2ntr dr

12 T(CL COs ﬁl CH SiIl ﬁl)

ﬁp) W3 nc tan B
» | = C, cos 1 — ! )
(pg 12 29 2mr * jfSh( C,/Cn

The quantity nc/2zr, called the solidity, is a measure of the pitch or spacing of the blades.

=2pW




e The total head change across the blades

The torque acting on the control volume is
dCspage = rn dFg ey, = (C sin B, + Cp, cos B, spWner dr

The total head change across the blades is then

Qdﬂashan W% U nc . cot ﬂ
Ah), ., = aft 1
(k)12 g dm 29 u,anCL S Bl(l + CL/CD)

dm = p2nr dr v,

2=Wh=yQh=pgQh




No Inlet guide vanes and the flow comes axially onto
the blade with v, =0 and U,=W,cos 8, V,=W,sin 3,

The static-pressure rise across the blades

i A W2
w (_E) _Winc C, cos f),I(I_ta.n B,
- P9 )1-2 29 2mr C./Cp

U?nc C, ( tan S,
- 1 —

2g 2nrcos f8, C./Cp
the total head change

W2 U nc cot f
Ah)y ., = 1 C. si 1 !
( ')1 : 2g v, 2nr L St Bl( + CL/CD)

U?nc C, ( cot B,
2g 2mnr cos f, C,./Cp



The local degree of reaction, which is the ratio of the static-pressure rise to the

tmal head Increase at some radial location.

R — (ﬂﬂg)lj _ L —(tan B,)/(C,/C))
(Ah,), -, L+ (cot B)/(CL/Cp)

1.0

<
o)

<
o

O
b

(ﬁp/pg)m /(Mr)lﬁ
o
B~

| | I 1 l

0 15°  30°  45°  60°  75°  90°
| B, =tan~! (V/U)



The solidity can be visualized as a measure of the cross-sectional area block-
age caused by the blades. Increased solidity increases the interference between
adjacent blades and causes the assumption of isolated airfoil flow to break down.

Figure 12.27 shows that the same snli&ity can be obtained for different numbers of
blades. Experimental testing has shown that maximum efficiency is usually ob-

solidity. For mechanical-strength considerations, the solidity at the hub is usually
1.25 to 1.30 times the solidity at the blade tip.

1.1

0.6

e
tn

Blade tip-solidity (nc/2ar),

Number of blades
- 5

o
B

l L
6000 8000 10,000 12,000 15,000 18,000

Specific speed, N ¥Q/(Ah,) /4 (r/min) Jgal/min




Chapter 2
Introduction of CFD
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:\jﬁuggi,;{ijsm‘«(Turbomachinery)F%?r
+CAD(Computer-Aided Design and Drafting )

+CFD(Computational Fluid Dynamics)
+CAM(Computer-Aided Manufacture)



1.1 What is CFD (Computational Fluid Dynamics)

& B 484 & (Computational Fluid Dynamics)
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1.2 How does a CFD code work?

A CFD code contains three main elements:
(1) Pre-processor(f|%i-E)-autocad
(2) Solver(:f~E4y)

(3) Post-processor(ixEiE)



CFD Modeling Overview

Solver
Equations solved on mesh
Pre-Processing / \ / \
— + Transport Equations + Physical Models
+ Solid + Mesh e mass
. . ImmE: ¢ Turbulence
Modeler Generator J = species mass fraction .
L1] 1 LI ¢ Combustion
= phasic volume fraction

s Radiation

¢  momentum

e energy e Multiphase
+ Equation of State » Phase Change
+ Solver ] + Supporting Physical Models e Moving Zones
;3 " \ e Moving Mesh /
Settings J

+ Material Properties

) + Boundary Conditions

Post-Processin .. ..
[ ¢t & + Initial Conditions




(1) Pre-processor (fj|«it)

The activities at the pre-processing stage involve:

e Definition of the geometry of the region of interest: the computational domain.
Gnd generation—the sub-division of the domain into a number of smaller, non-
overlapping sub-domains: a grid (or mesh) of cells (or control volumes or
elements). - .

Selection of the physical and chemical phenomena:that need to be modelled.

e Definition of fluid properties.

e Specification of appropriate boundary conditions at cells which coincide with or
touch the domain boundary. |

VREEE GV REgI S K2 oA %‘r%ﬁaﬁ% NRLE- & RN

AP B 42 ~ Bubble F*3E ~ £ 1@ -~ fg&+ ~ moving grid o (Chapter 2 and

3)




Design and Create the Grid

¢+  Problem Identification and Pre-Processing
I. Define your modeling goals.
. Identify the domain you will model.

W o

Design and create the grid.

i

triangle quadrilateral
tetrahedron hexahedron
J
pyramid prism/wedge

Can you benefit from Mixsim, Icepak, or Airpak?
Can you use a quad/hex grid or should you
use a tri/tet grid or hybrid grid?

e How complex is the geometry and flow?

e Will you need a non-conformal interface?

What degree of grid resolution is required in
each region of the domain?

e Is the resolution sufficient for the geometry?
e Can you predict regions with high gradients?
e Will you use adaption to add resolution?

Do you have sufficient computer memory?
e How many cells are required?
e How many models will be used?

% Finite Volume method !
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Example: Cyclone Separator

o l—— Air Outlet

Solids Outlet
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Flow Triangles

Quadrilaterals

Boundary Layer

Figure 2.9: Hybrid Mesh in Boundary Layer
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centrifugal impeller
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Impellor of centrifugal compressor

radial turbine




Screw compressor
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A rigid, viscous
mesh attached
to the store
surface is used
to model the
boundary layer.



(2) Solver(:}- %)

There are three distinct streams of numerical solution techniques:
e Finite difference method

e Finite element method

e Spectral method

The basis of the solver perform the following step:

¢ Approximation of the unknown flow variables by means of simple functions.

¢ Discretisation by substitution of the approximations into the governing flow
equations and subsequent mathematical manipulations,

¢ Solution of the algebraic equations.

. e.

(@) P. D. E. (partial differential equation) ®» F. D. E (finite difference equation)
(b) To find the all the FDE’s of grid points inside the computational domain

(c) To find the solutions of the algebraic equations.



Set Up the Numerical Model

* Solver Execution

4. Set up the numerical model. ¢ Fora given problen’l, you 1s‘.irv-*ﬂl 11eed to:

5. Compute and monitor the solution.

e Select appropriate physical models.

= Turbulence. combustion. multiphase. etc.
e Define material properties.

= Flud

= Solid

s Mixture

e Prescribe operating conditions.

e Prescribe boundary conditions at all
boundary zones.

Solving initially in 2D will
provide valuable experience

with the models and solver _ T _
settings for your problem in a e Provide an initial solution.

short amount of time. e Set up solver controls.

e Set up convergence monitors.




The finite volume method--a special finite difference formulation

The numerical algorithm consists of the following steps:

e Formal integration of the governing equations of fluid flow over all the (finite)
control volumes of the solution domain.

e Discretisation involves -the substitution of a variety of finite-difference-type
approximations for the terms in the integrated equation representing flow
processes such as convection, diffusion and sources. This converts the integral
equations into a system of algebraic equations.

e Solution of the algebraic equations by an iterative method.



(3) Post-processor (ix &+

llll_‘l
N’

Domain geometry and gnd display

Vector plots

Line and shaded contour plots

2D and 3D surface plots

Particle tracking

View manipulation (translation, rotation, scaling etc.)
e Colour postscript output

More recently these facilities may also include animation for dynamic result display
and in addition to graphics all codes produce trusty alphanumeric output and have
data export facilities for further manipulation external to the code.
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Consider Revisions to the Model

*

Post-Processing
&, Examine the results.

7. Consider revisions to the mode],

¢ Are physical models appropriate?

Is tlow turbulent?

Is tlow unsteadv?

Are there compressibility effects?
Are there 3D effects?

¢ Are boundary conditions correct?

Is the computational domain large enough?

Are boundary conditions appropriate?

Are boundary values reasonable?

¢ s grid adequate?

Can grid be adapted to improve results?

Does solution change significantly with
adaption, or 1s the solution grid independent?

Does boundary resolution need to be improved?






Road Map for CFD

Geometry .| Physics -~ Mesh -~ Solve .| Reports -~ Post-
Processing

A4 A4 A4 A4 A\ 4 A\ 4
Select Heat Transfer Unstructured Steady/ Forces Report Contours
Geometry ON/OFF (automatic/ Unsteady (lift/drag, shear

manual) stress, etc)
A A A A A A
Compressible Structured Iterations/ XY Plot Vectors
Geometry ON/OFF (automatic/ Steps
Parameters manual)

A 4 A 4 A 4 A 4 A 4
Domain Flow Convergent Verification Streamlines
Shape and properties Limit

Size

A A A
Viscous Precisions Validation
Model (single/

double)

A4 A4
Boundary Numerical
Conditions Scheme

A
Initial

Conditions
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Chapter 3

The Finite Volume Method for
Diffusion (Conduction) Problem

Conduction Heat Transfer




4.1
4.2
4.3
44
4.5
4.6

Introduction

Finite volume method for one-dimensional steady state diffusion
Worked examples: one-dimensional steady state diffusion

Finite volume method for two-dimensional diffusion problems
Finite volume method for three-dimensional diffusion problems
Summary of discretised equations for diffusion problems



Finite-Volume Method

Finite-Volume methods are related to finite-difference method,
but they are derived based on the integral form of the
conservation law—this allows us to represent discontinuities
accurately and, as we saw, conservative formulations
accurately capture shock speeds.



2.4 Conservative form of the governing equations of a
compressible Newtonian fluid

dp

Mass e + div(pu) =0 (2.4)
x-Tomentum 3(;:1} + div(puu) = - g—i + div(u grad u) + Sy, (2.37a)
y-momentum 5‘[;.'} + div(pvu) = —?_; + div(p grad v) + S, (2.37b)
- Hew) | aiv(pwn) = - 2 4 d s 2.37

ramomentum 5 + div(pwu) = — g + div(p grad w) + Sy, (2.37¢)

Api) vipin) = —pai ' dT)+ P+ 8§ 2.38
Internal energy o T div(piu) = —p divu +div(k grad T) + © +§; (2.38)
Equations of state p=plp,T)and i =i(p,T) (2.28)

e.g. perfect gas

p=pRT and i =C,T (2.29)

General form: 3(;:*-’] +div(ppu) = div(T grad ¢) + S,

¢ Eqﬁai tol,u,v,wand i {ﬂr_i" or hg)




2.5 Differential and integral forms of the general transport
equations
ANpe)

Y + div(pgu) = div(’ grad ¢) + S,

The _integration over a 3-D control volume CV yields

J Lg‘ﬂ av + [ div(ppu)aV = J div(T grad ¢)dV + J S,dv

C¥ CV cv (

using Gauss’ divergence theorem. J divadV = J n.adA

Pt y
» g J ppdV | + J n.(popu)dd = ‘ n. (I grad ¢)dA + j SedV
o cv A A cv
Net rate of Rate of increase
Rate of decrease of ¢ due to _ of ¢ due to " Net rate of
increase of ¢  convection across diffusion across  creation of ¢

the boundaries the boundanes



Comparison:

d(pg)

+ div(p¢gu) = div(T’ grad ¢) + Sy

ot
Rate of increase Net rate of flow Rate of increase Rate of increase
of ¢ of fluid  + of ¢ out of = of pdueto  + of ¢ dueto
element fluid element diffusion SOUrCES

gg J popdV +Jn,{p¢-u}df=.! = J n. (I grad ¢)d4 + J SpdV

cv A A cv
Net rate of Rate of increase
Rate of decrease of ¢ dueto  of ¢ dueto Net rate of
increase of ¢ = convection across  diffusion across  creation of ¢

the boundaries the boundanes



In steady state problems

9 ( J qu;dV) + ‘ n.(pou)dd = [ n. (T grad ¢)dA + j SedV

ot
CV A A CV

D J; n.(pgu)dA = J n. (I grad ¢)dA + CJF SedV

In time-dependent problems

= J %(J (qu}dV) dt + [ Jn.(prﬁu]d;; dt

Al (s At A

- J J.n*(l"t;.grad gﬁ)d&! dt + J [ SedV dt
Ar A Ar CV



The problem of Steady heat conduction
with heat generation (source)

i.e. u=0, and 5(/’@ 0

7% + d%u =div(I" grad ¢) + Sy

W div(l'grad ¢)+ Sy =0

»

Ve(Vh)+S, =0

1-D steady-state diffusion (conduction)

» &

3y

d¢
Z) P




The finite difference method

d

_-_._,.-"

s = A

[ ——

I m+ 1, n

m, -1

FiGURE 4.5 Two-dimensional conduction. (a) Nodal network.
(b) Finite-difference approximation.

Tm-‘-].n- Tm.n
Ax
Tm,:xm m=1.n
Ax

1l OTIoX| e rpn — 3TIIX| 12
P |on A
- Trtiat Tn-1s =27,
(Ax)*

5}2 m.n "1}'

T - 5Tf&}’imm+1ﬂ - &Tf‘;y |m.ﬂ-l.l"2

= 2T, n

m mr—1

(Ay)?




Finite-Difference Form of the Heat Equation
” ” Ax = Ay
o°T 8 T

—0| W
P oy*

Tmﬂﬂ + Tm,n-l + Tm+1,n + Tm_ ‘_ 4T = ()

E'in T -E.‘.g = D
The Energy Balance Method ¢
quii}*tmm + '-'E'I:EU‘: i ﬂ}' * 1) =)

1'“—:!:..1:*-"'- — T
e m l,n L
T ”ﬁ':ll ql{m—l,n]—r{mm] = k(ﬁ}r 1) &x
& L T. -1
e . N '_-:'E}. Dim+1n)y—(mn) — k{,ﬂ}r 1) - 11’.' -
L o——n> l—e

: Tt
m=-1l,n 1 mn : m+ln- »
. I 1 ) _L

__T'_' mu+1 Tm.u
.
n

Gima+1y—=imn) k(Ax- 1) Ay

A=l Tm.n
Ay

—ax— Gimn—1)—(mn) = K(Ax * 1) -

. ﬂx 2
» Tm"""" +T ma=1 T Tm+Iﬂ + Tm—l.n + £ k i o 4Tm,,_l‘|=[}




The Matrix Inversion Method / T
S TR T
Discretisating equations N T
aply, +apl; +apl; + - +aTy, =C,
an T, + anT, + axnTs + o+ aTy = G
ﬂ]"'l'TIT]- + ﬂmTz _I_ ﬂH‘ETE" + LAE + Hli'l']"l"TH — C.l"-"
[A][T] = [C]
a, ap '-'imqgg ' iR [C/
ay; QA **° Gay| | T, C,
A= : . ., T=| |, C=|
- - ; .
Gy dpp T Ay L I Ci




The solution vector may now be expressed as

[T] =[A]7'[C]
] bll blz bw_
bzt -‘!?11 bzru'
[A] '=| . : :
by by o bHN_

I = b C; +bC + - + bCy
I3 = by,C) + byyCs + -+ + by Cy

Ty =byC) + bpnCy + - + by Cyy



4.53.2 Gauss—Seidel lteration
Discretization equations

apTy +apT, +apTs + o +awTy =C,

NGy
4

y 7=l by

anl I Tanls + - tanTy =G : T — C, = d
- . . - . . 7 -

Application of the Gauss-Seidel method to the system of equations represented
by Equation 4.51 is facilitated by the following procedure.

1. Aninitial (k = 0) value is assumed for each temperature T,. Subseguent com-

putations may be reduced by selecting values based on rational estimates.
C- i-1 .
M= N A
AT, T

a, o4,

7

2. New values of T, are then calculated by substituting assumed (k = 0) or
new (k=1) values of T; into the right-hand side of Equation 4.55. This step
is the first iteration (k = 1).

T, =
(1 i ) 0y _ (1 (0
IO =23 N0 _® _A7O 7
t 7=l a:'z'

i)

3. Using Equation 4.55, the iteration procedure is continued by calculating
new values of 77" from the T}" values of the current iteration, where 1 =
j =1i—1,and the T;*"" values of the previous iteration, where i + 1 =j = V.
C. —ta, . Noa. _
=2 N Yt -1 — Ky _ lk=1)
T—E ag; E a T} 2 a; T-f AI—'} T-f

j=1 " i

where i = 1, 2, ..., N. The superscript k refers to the level of the iteration.

4-To whatever extent possible, the equations should be reordered to provide
diagonal elements whose magnitudes are larger than those of other ele-
ments in the same row. That is, it is desirable to sequence the equations
| i I
such that Ea“; > |r.z,2 N T !a”A; ayy| = |a21 ,» 323 awi; and so on.

LELILIENE |




EXAMPLE

A large industrial furnace is supported on a long column of fireclay brick. which is
I m by 1 m on a side. During steady-state operation, installation is such that three
surfaces of the column are maintained at 500 K while the remaining surface is ex-
posed to an airstream for which T, = 300 K and /& = 10 W/m® - K. Using a grid of
Ax = Ay = 0.25 m, determine the two-dimensional temperature distribution in the
column and the heat rate to the airstream per unit lenoth of colimn

Find: Temperature distribution and heat rate per unit length.
axs =500k fireclay brick (T =478 K): k= 1 W/m - K.
1;._.1 0.25m | | [

Assumptions:
1. Steady-state conditions.

— Fire clay brick
2. Two-dimensional conduction.

- L=500k 3 Constant properties.

4. No internal heat generation.

7 B

i
» T .

1 —» T _=300K

= — 3 h=10WmaK



JLEEEE

Ax= "
mon+ L —-IG.EEmf"_ — T,=500K
I - 1 "
| Ay=0.25m g
el B s il } 1 2i 1
l 1 : m, m *

m = 1‘_rn | - I thm+l,n i ~—1~ Fire clay brick
" ] . 3 4 3
R

T =500K L
’ - - 7,=500 K
-‘ﬂlpﬂ"‘l l—"—- 5 E‘i 5
-— A r — * . 1
-+ — - 7 EE
Tm,rl'i-l + Tm,n—l + Tm+l,n ' Tm-hn 4Tm.n =0 f ‘.
Air . _"‘- T =300K
—  h=10WmK

Node3: T,+ T+ Ts+ 500—4T;=0

Node5: T3+ Tg+ T;+500—4T;=0 NodeT: 2T, + Ty + 2000 - 97, =0

Node 8: 2T, + 2T, + 1500 — 9T; = 0

Nﬁdﬂ 4: TE. + ET:{, 1+ Tﬁ - 4T4 s D
Node6: T,+2T;+T3—47T;=10



Discretisating finite-difference equations is as follows:

—4T,+ T, + T+ 0+ 0+ 0+ 0+ 0 =—1000
W, +—4T,+ 0+ T,+ 0+ 0+ 0+ 0 =-500
T,+ 0 +—-4Ty+ T,+ Ts+ 0 + 0 + 0 = =500
0+ T,+ 2T,+-4T,+ 0 + Tg¢+ 0+ 0= 0
0+ 0 + T,+ 0 +-4T,+ T,+ T,+ 0 = —500
0+ 0+ 0+ T,+ 2T, +—4T,+ 0 + Ty= 0
0+ 0+ 0+ 0+ 2.+ 0 +-9T;+ T, = —2000
0+ 0+ 0+ 0+ 0 + 2T, + 2T, +9T; = —1500




D [A][T] = [C]

—-
I
+

1 | 0 0 0 0 0] —1000 7
2 —4 0 1 0 0 0 0 —500
1 0 -4 1 1 0 o0 o0 —500
[4]= g g} ? Lg —E : ? g 1= —gﬂﬂ
0 0 0 1 2 -4 0 1 0
0 0 0 0 2 0 -9 1 —2000
0 0 0 0 0 2 2 -9 ] L —1500 |
"T,7 [489.307
D (7] =[]~ '[C] T, | | 485.15
Ty | | 472.07
_ | Ty | _| 462.01 |
U= Ts | | 436.95
Ts | | 418.74 |
T, 356.99
Tyl 1339.05




Axs=
™ 025m [+ | gk
_?_
Ay=025m [
} 1 2 1
_+ $
' ~—1— Fire clay brick
Y
T.=500K | — T =500 K
— 5 6] 5| ’
. -
J s! 7
. .
Voo \t’
— T_=300K

—  h=10WmaK

The heat rate from the column to the airstream may be computed from the
expression

(E) = 2 [(%) (T, T..) +Ax (L, — T.) + (%) (T, — :r,ﬂ)}

=2 X 10 W/m*-K[(0.125 m (200 K)

+0.25m (56.99K) + 0.125 m (39.05 K)] = 883 W/m



Control Volume Approach

Let us imagine that we divide the rectangular region of Figure 12.1q¢ into a
finite number of nonoverlapping control volumes (areas, since our region is
two-dimensional). These control volumes are chosen such that each one
completely engulfs only one grid point®The main idea behind this approach is
to integrate the differential equation over each control volume using chosen
(assumed) profiles for the unknown variable ¢ in order to evaluate the required
integrals®Once we complete this task, we have in our hands the discretized
form of the differential equation, a form that contains the values of ¢ for a
group of neighboring grid points. It is worth noting that we are free to assume
different profiles for ¢ to approximate different terms in the differential
equation.

e - A
A T

/ Nt
| \




The finite volume method--a special finite difference formulation

The numerical algorithm consists of the following steps:

 Formal integration of the governing equations of fluid flow over all the (finite)
control volumes of the solution domain.

e- Discretisation _involves -the substitution of _a_ variety of finite-difference-type
approximations for the terms in the integrated equation representing flow
processes such as convection, diffusion and sources. This converts the integral

equations into a system of algebraic equations.
e Solution of the algebraic equations by an iterative method.




The main advantage of the control volume method:

It 1s important to realize that if the differential equation expresses the
conservation of some quantity like, for example, energy in the First Law of
Thermodynamics for an infinitesimal control volume, then the discretization
equation is the exact representation of the conservation of that quantity in a
finite control volume. This is the main advantage of the control-volume
formulation method: quantities such as mass, momentum, and energv are
conserved exactly over
entire region
volumes. To illustrate this method consider the following simple example.




4.2 Finite volume method for one-dimensional steady state
diffusion

Step 1: Grid generation

The first step is to divide the computational domain into
discrete control volumes.

Control volume boundaries

EA —ferin—e————e——e—B§
o W T ! ! o
' u
T
& =
IN :
Control volume Nodal points o 1 _
o '.
H V + '
. 5 S L : .
W:west U O O S S Y IS0
- : = Ax— : }
EeaSt i ' ; :
N:north

S:south 2-D



Step 2: discretisation i
The key step of the finite volume method is the integration of the governing equation
(or equations) over a control volume to yield a discretised equatiﬂn at its nodal point
P. For the control volume defined above this gives do
2 (r%2)+s=o

dx

dx

J div(I’ grad ¢)dV + j SedV = J n.(I" grad ¢)dA + J SedV =0
N cV

=%

CV

Ao\ -
— y =
dx)f SAV =0

£ A

n-,__...__'t..




In the finite volume discretisation procedure

EIWP 'E.XPE
I-‘ __OXup i OXpe —‘ '

¢

W E

L Axe=bx. |

96\ b5 —bp b5 — b
('EE)I A 2(Ax2) (O

(1)The gradient at a cell face “e” is a central difference with second-_
order accuracy

(2)After grid refinement the error reduces more quickly in a second-
order accurate differencing scheme than in a first-order accurate

scheme




M—wa

| " |

: T .,
e I (R L ¢l 142
et | oo ===

Assumption: Linear approximation and ce}al dlfferencmg

r,——»tle (rA 5@) = me(‘ﬁ"" — “’)

) dx 0Xpg SAV =S, + S,¢p
I'p+1¢ d’?}’) (¢’P — ¢w)
I.= 5 (FA dc ).~ = Twdy Oxwp
d ¢ do -
J a( )dl”-i— j SdV—(l“A ——)E— (I"A E)w+55l’_.ﬂ

AV

— Py 1 _
I, Iy ar I,
> (G- SP)¢F (Gt o+ (e e+

OXpE Oxwp OXwp



rE rw o rw rE
(HAE * 'irprw - SP) Pp= (éIFFP Aw) b+ (éxPEAE) Pe+ S

appp = aw Py + acpg + Sy SAV = Su+ S_,,:-,:_i:f_.

where

aw dg ap

rw A I e
OxXwp " OxpE

A, aw + ag — Sp

In practical situations, as illustrated later, the source term S may be a function of the
dependent variable. In such cases the finite volume method approximates the source
term by means of a linear form: SAV =S, + S,¢p.




Step 3: Solution of Discretization Equations

© Discretised equations of the form (4.11) must be set up at each of the nodal points in
order to solve a problem. For control volumes that are adjacent to the domain
©boundaries the general discretised equation (4.11) is modified to incorporate
boundary cnnditinnS@The resulting_system of linear algebraic_equations is then
solved to obtain the distribution of the property ¢ at nodal points. Any suitable

matrix solution technique may be enlisted for this task. In Chapter 7 we descnibe
matrix solution methods that are specially designed for CFD procedures.




Step 3: Solution of Discretization Equations

2.4.1 Direct Methods

Using one of the discretization methods described previously, we may write the result-
ing system of algebraic equations as

Ap=B (2.18)
where A is the coefficient matrix, ¢ = [¢,,0,,.. ]? is a vector consisting of the discrete
values of ¢. and B 1s the vector resulting from the source terms.

Direct methods solve the equation set 2.18 using the methods of linear algebra. The
simplest direct method 1s inversion. whereby ¢ 1s computed from

6 =A"'B (2.19)

A=

L I o Y o
o o # =2 A
= I T T
= = = OO
T R = R




4.3 Worked examples:

one-dimensional steady state diffusion

0.5m

S -

A=10x103m?
k =1000W/m K

T4 =100 Ty = 500

Area (A)
1-D steady-state diffusion (conduction) without heat source

Ve(V)+S, =0| | £ (rsf)+s=0

d [ dT
E(kmc)‘”




- | . Sxwp ol dxpg .
Solution r | Bne | S| ‘
- —t -
Step 1. Grid generation $ s S ¢
w w - E
| | 2 3 L
w2 |, & [, & |
s . N A (4T _,
tep 2: discretisation e 2 ) =
d [ .d _ d¢ d¢\ _
4o () - (ra2) =
AV

T, -T T, —T
" E Py _ P WY
e R

P
» (kf A + . AW)TF= ( kw Aw)TH’+( kf AE)TE

Oxpg OxXwp Oxwp OXpEg

aplp = awTw + agTg



the discretised equation for nodal points 2, 3 and 4 is

apTp = awTw + agTg [

aw

ag

ap

af!

k
éxA

aw + ag

a,l, =a, T, +a,l,

B aT,-3,T,+a,T,

a,l, =a;T,+a.T,

;% the discretised equation for nodal points boundary Nodes 1 and 5

Tyt

1 2 3 4 5
5x/2 8x I &x [ I 8x/2 |
k &( SER) kA, ()

k

PE

M(Tg — Tp) Tp —\?
ox

(a"‘

51}2

2k k 2k
5IA)TP_0 Tw + (51 )TE'I' (51‘

.{IPTP — ﬂwTw + ﬂETE + S,,

aw ag dap Sp S
kA 2kA 2kA
el - — T
0 o aw +ag — S8 S S5

A)T.

»

(P=1or %)

a;Ty=ayTy+a,T,+5,




the discretised equation for nodal point 5 (P=5)

. 1 2 3 4 5
!_*E.dZ_-__II_: 8x =!: bx _r_E B2
—T T, —T
kAe(] o) -kALL ) =0
Xpg P

TE—TF TF_TH’ .
k"’( 5%/2 )F‘b"( 5x )_U

k 2k k 2k
(EA §IA)TF_- (EA)TH#-FG.TE*{—(EA)TB

aw dg dp SF SH

kA 2kA 2kA
o | O | wtemS | T |




Solution
Step 1: Grid generation

Tp=100°C 2 3 4 5
* e R RS ® } > H d b
- IO - S U - S |32, |
L >

Step 2: discretisation

dx \ dx

Integration of the above equation over a control volume gives

J i(g)dv- J n2(T — Too)dV = 0

AV AV

> (D) (4D |- er- o =

d (dT) — n}(T — T,,) = 0 where n* = hp/(kA)



» |[(557)- ()| - e

» (1+2)n=(x

ox

ox

— To)bx] =0

. ) T, + (i) Te + n*6xTo — n*0xTp

For interior nodal points 2, 3 and 4, the discretisation equation

a'2
apTe = awTw + agTe + S, a,
a'4
aw ag ap Sp SH
6i 5l aw + ag — S, —n?éx 26xT,
X X

a, I, +a,T,+ S,
a,I,+a,lT,+S,
a,l,+a T+,



at boundary node 1

Q
Tg=100°C i ) 3 4 5
e e R | o !
b i e e S S * ! 1 *

[ TE{;ITF) _ (Tp ;IT[) — [P(T, - T)dx] = 0
T,

Tg —T Tp— T3\
» [ Eéx P) B ( ;x/Z ) - [P*(Tp — To)x] = 0
» aplp = awTw + agTeg + Suwp a,T;=a, T +a,T,+S,

:I;;ff ag ap SP Su
1 2 2
0 = aw +ag — S, —n?dx — 5 n*oxT o + 3 Ty




at boundary node 5

Tp=100°C 2
Eosmemonnnne
8x/2 | 5x | Bx

- l |

[(!ﬁ )-(5%

W aplp=awlw +aplg+Su W 3 T.=a,T,+a Tc+S,

aw ag ap Sp Su
_'_;_ 0 aw + ag — S, —n%dx | n?oxTy
X




The matrix form of the equations set 1s

20 =5 0 0 o}[m 1100
-5 15 =5 0 0o||m 100
8, Ty=3y Ty +8,T,+S, 0 =5 15 =5 o||7s| =1 100
a,T, =aT, +a,T, +3, 0 0 -5 15 =5||T4 100
aT,—aT,+aT,+s, |™ [ 0 0 0 =5 10f][75] [ 100

a, I, =aT;+a. T, +3S,

asTs=a,T,+agTe+S,

The solution to the above system is

- - 100 —————
TI. 64 . 2 2 : ':‘}l:cmtn;:ﬁifoa:usg;iﬁ(gzm o) -1
Tz 3 6 . 9 1 I 5 801 | M Numerical solution (fine gri%i) —
T35 | = |26.50 £l i
=3
Ty 22.60 : |
0= —
Is 121.30 H
20 ! L , . |

0.0 0.2 0.4 0.6 0.8 1.0

The maximum deviation is 2% | Distance (m)



4.4 Finite volume method for two-dimensional diffusion
problems

the two-dimensional steady state diffusion equation

Ve(Vd)+S,=0m ax( a¢)+a_y(r?£)+s L

Step 1: Grid generation

R R N Y LY T WIFars 1

-------------

-----------------




Step 2: discretisation

Integration of the above equation over a control volume gives

[ 3::( gf)ir d + L@,( ‘;f)dr dy + j SsdV =0

AV

A, = A, = Ay and 4, = 4, = Ax,
B [ a(3)-ra(R) ] () -rea(s) | +ser=o

Flux across the west face = I'y, 4,, 3¢ =T, A, (¢p — ¢w)

ax W 'S-IH‘?
Flux across the east face = I', A4, % =T, A, (g — ¢p)
6.1' EIPE

Flux across the south face = I A4; a_¢ =T, A4, (Pp — ¢5)
3-}' 5 6}’31’

Flux across the north face = I', 4, 6¢’ =T, A (¢n — 9»)

3}’ n éyPN




»

» (.5.:;,-,? ¥

Coa @500 L (@ =bw) o ($n =)
éxPE OXwp éyFN
_ r,r A3(¢P _ ¢'S) +SﬁV — 0
5}'5? .
I',A, T.A4A., 1A rﬁA"—-S)qﬁ
Sxpg  Oysp  Oyew  T)°T

r'w Aw :rg Ae r A r

z(érw.ﬂ)‘ﬁw_l-(&lf’f)(ﬁ}:-{—( )dJS (5 FN)¢N

Ayw = A, = Ay; A, = A; = Ax.
» appp = awPy + apQg + ﬂs‘i’s +an@y + Su

dy dg ag ap ap
A
I'w Ay I'e 4e I's A I'n A, aw + ag + as + ay _Sp
oxwp | Oxpg | Oysp Oypn




4.5 Finite volume method for three-dimensional diffusion
problems

Steady state diffusion in a three-dimensional situation is governed by

Few0s, <o 2R 5(r) 48 -

A cell in three dimensions and neighbouring nodes



Integration of Equation (4.58) over the control volume shown gives

o [ re®)] ) ra®)]
+ [r, A (%i—’)f— [y A (‘%)J + SAV =0

[I" (g — dp)de r, (¢p — d’w)Aw}

© Oxpp Oxpp

»

N -rﬂ (Py — p)An r, (Pp — ¢5)As]

i OYpPN Oysp

[ (1 — Pp)A, (Pp — Pp)Ab B
+ |T, Tcszp: ~T o ] + (Su + Spdp) =0

» appp = awdy + apPp + asps +andy +apdy +argr + S,

aw ag as ay ag ar ap

['wAy | Tede |54, |ThAy |Teds [T1A, aw +ag +ag + ay
Oxwp | 6xpg | Oysp | Oypn | Ozgp |Ozpr |+ag+ar—3Sp




4.6 Summary of discretised equations for diffusion problems

e The discretised equations for one-, two- an *hr=s Aimmancicmal Aifnine groblems

aw dr as ay ag A T

D T, A, [, A, ) ) ) )
OXwp OxpE
I'uA, A, [ A, [ A,

2D - -
Oxwp Oxpg dysp Sypy

D I, A, A, I, A, oA, [y Ay T, A,
Oxwp Oxpk dysp OypN dysp Ozpr

Source terms SAV = S.+ S,¢p and specifying values for S, and S,.
For a one-dimensional control volume of width A{ with a boundary B:

o 2kgA
source contributions : fixed value ¢ : S, = ; z = ®p;
2kgAp
Sp = —
P ﬁc

fixed flux gg : S, +S,¢p = g5



Chapter 4

The Finite Volume Method for
Convection-Diffusion Problems




2.4 Conservative form of the governing equations of a
compressible Newtonian fluid

Mass i—p + div(pu) = 0 (2.4)
x-momentum {g ) + div(puu) = — g_:ﬂ + div(y grad u) + Spy (2.37a)
a d ,
y-momentum {;}v} +div(pva) = - d_i + div(pu grad v) + Sy (2.37b)
| Olpw) di )=-— i + div( dw)+ 8§ (2.37c)
z-momentum at + div(pwu) = 5, TAviugra Mz .

d
Internal energy ﬂ-{ap——) + div(piu) = —p divu+div(k grad T) + @ + §, (2.38)

Equations of state p=plp,T)and i =i(p,T) (2.28)
e.g. perfect gas
p=pRT andi=C,T (2.29)

General form: —%@ + div(pdu) = div(T grad ¢) + S,




%SIXT; div(pgu) = dfu{[‘\grad @)+ Sp

using Gauss’ diverg

The steady convectio

ence theorem. J divadV = j n.adA

¥

A
n-diffusion equation gan derived from the transport

equation for a general

J n.(ppu)d

A

5.2 Steady n.nr:c#umnﬁmnﬂ.l

The governing equati

property @ by deleting the transient term

4=Jn.(l"grad¢') -i—i SedV

convection and diffusion

ons for the 1-D steady flow

v

d(pu)

»

d

ithout heat source is

(pud) = = (r@)

d
=0 dx

dx

Mass

dx
X-momentum




Finite volume method for 1-D steady state convection and diffusion

Step 1: Grid generation

The first step is to divide the computational domain into
discrete control volumes.

L]
- bx,.p __i_- Sxp _;_i _______ e "“'E.' eee ..:
”w_""____.,_,,__. R T:-_.— u ' I
1-D ¢ e $
w w P ¢ E
- Sx,.. ‘_II h
o o o I

Step 2: discretisation

] j n.(ppu)dd = J n. (I grad ¢)d4 + J SedV
A A cv

d d [_do _ (429 _ (1492
— (pud) = — (1‘3) ) | (pudd), — (pud9), = (FA c’?x)e (I"A 3I)w




d

. . d do\ ..
Integration of transport equation — — — | [ — | gives
ntegration ansp q dx(pud)) dx( dx)

RN %2 %
(pud9), — (puA), = (” a_) } (r“' "3_)

integration of continuity equation yields %ty-;div{pu} =0
(pud), — (pud), =0 wp |Fe—F,=0

Definition: the convective mass flux per unit area | F = pu(Kg/s m?}

the diffusion conductance at cell faces * D :5£ (Kg/m +s)
X

F. = (pu),, Fe = (pu),
[y I'e

D, = —=

D, = ,
OxXwp Oxpg




The central differencing scheme

Assumption: Ilnear Interpolation for transported pro

D?V

1_1 Bx,.p rr Xpe |

Eooogpnrebos

= (¢p + ¢£)/2
= (pw + ¢p)/2 $

———]

(&),

¢E2Afw O(sz

)

i
e — ;;.L —_g
i

Uy ———
w

E
w

dand a uniform grid

A=Const.

T
F‘“:(Tj”’ A(pmd: (pudd), = (T4 JA%)
Dy=5-"0 De= 5m
» Fo¢, — Fupy = De(pgp — ¢’F} D.(dp —
» —[¢F+¢'E _F_\m‘fx‘F ¢p) = — ¢p) — Du(Pp — dy)
o [(+-5)(o +%)J¢P=(Dw+?)¢w+(ﬂe-%)¢f
» (D +—) (D ——) (Fe —Fw)%bp— (Dw+-,} ¢w+( e—fzf)cbg
aw ag ap
» aP¢’P - EW¢'W +aE¢E Dm-f-%“’— D_a—%' aw +ag + (Fe — F,)

Step 3: Solution of Discretization Equationsfor all grid nodes



Example 5.1
1-D steady state convection and diffusion , @ is the property
u

I P
¢=1I - |¢!-0
I-D I-L=l'0m1

d d do -
X-momentum E(puqf)) = a (FE) ,0 = 10 kg/ma, r = 0.1 kgh'nfs

Using five equally spaced cells and the central differencing scheme
for convection and diffusion

calculate the distribution of ¢ as a function of x for

(i)Case 1: u =0.1 m/s with 5 gridnodes |[§x =1/5 = 0.2

(i) Case 2: ¥ = 2.5 m/s with 5 gnd nodes

(iti) Case 3: u = 2.5 m/s with 20 grid nodes

ox =1/25 =0.04




. | g
A B
Solution s 9 MGl 4 et
oml et e TR L . M40
................. 1 w W"""P"""-f E | PP
x =0 = x =L

I_‘__ﬁx_F_l_*_&_t____I FA=FB=FandDB=2F/6x=2D

p=10kgm’, T =0.1 kg/m's

le Fed’ Fﬂ‘(p\

for node 1: _(¢P + d’,ﬂ\F‘iﬁba = D, (¢ — ¢p) — Da(d0p — ¢4)

b, =%, Fu=F,

» FaP‘ﬁP“ﬂWfbw'FaE E T Oy ap-—aw+ag+(F F.,)-3S,

Srwp |, Sxpe |

: |
for nodal points 2, 3 and 4:| P=2,3,4 —*—‘* —
- e [

(0.+5) + (0-2) o ror- o 05

» appp=awdy +agpy ap=aw +ag+ (Fe — Fu)

Boundary node | Fe¢, - ch;ﬁy\( —¢p) = Du(dp — by) | Fy = Fp = F and Dg = 2I'/0x = 2D

e for node FB&B qb_p + (,b;,-;) - Ds(tﬁg ¢’p) - Dw(¢’P - ¢'W)

P5 ¢e—¢ﬂ Ff—FE
» arbp=awPy TazPp +S, | ap=aw +ag+(Fe—F,) =S

( ¢P) - DW_(‘:ﬁF - f-bW)

= 4




but F=F,=F,=pu=25 D=D,=D,, =1/dx=0.5
FA=F3=FandDB=2F/ch=2D

Node awy ag S, S,
1 0 D-F/2 | —(2D+F) | (2D+F)¢,
2,3,4 | D+F/2 D-F/2 | 0 0
> D+Ffz| 0 ~(2D-F) | (2D—F)¢,

3
(i) Case 1 % =0.1m/s:p=10kg/m’, ['=0.1 kg/m/s
F=pu=0.1,D=T/6x=0.1/0.2 = o_:|(F/D::0.2)

Node ay  ag S S, a,P =awy +ag - S,
1 0 045 1l.1¢, -—1.1 1.55

2 055 045 O 0 1.0

3 055 045 0 0 1.0

4 055 045 O 0 1.0

5 055 O 09¢, -09 1.45




. 1.55 —-0.45 0 0
—-0.55 1.0 —045 0 0
0 —-0.55 1.0 —-0.45 0
0 0 —0.55 1.0 —045
! 0 0 0 -0.55 1.45
using ¢, =1 and ¢ =0
The solution to the above system 1s
¢, [0.9421
b, 0.8006
0.6276

| Ps

¢3| = | 0.
b l0.4163

01 T

c OO0 0 —
L [




Comparison with the analytical solution

¢ — ¢ _ exp(pux/T) —1 : - 1 — exp(25x)
= ¢(x) =
¢, — o exp(pul/T’) — 1 7.20 x 100
Node Distance Finite volume Analytical Difference Percentage

solution solution error

1 0.1 0.9421 0.9387 —0.003 -0.36

2 0.3 0.8006 0.7963 -0.004 —-0.53

3 0.5 0.6276 0.6224 —0.005 —0.83

4 0.7 0.4163 0.4100 -0.006 —-1.53

5 0.9 0.1579 0.1505 -0.007 —4.91

5x 1.0 T T T
A. ........ Lo o 2 l‘.;a ...... 3....“.._| 4 | g B 08 —_
o=l f——T————————— J ¢=0 ‘
x-o ........ W w... ..P.. e 5 ................x...._L
| dx | Sx 0.6 -
¢
Exact solution
0.4 /
Numerical solution (CD)
0.2 -

] | 1 i 3 | i

0.0 0.2 0.4 0.6 0.8 1.0

Distance (m)



(i) Case 2: u = 2.5 m/s with 5 gnd nodes

F=pu=25D=TI/6x=0.1/02=0.5](F/D=5)

Node Distance Finite volume Analytical Difference Percentage
solution solution error
1 0.1 1.0356 1.0000 ~0.035 ~3.56
2 0.3 0.8694 0.9999 0.131 13.05
3 0.5 1.2573 0.9999 -0.257 -25.74
4 0.7 0.3521 0.9994 0.647 64.70
5 0.9 2.4644 09179 —1.546 —168.48
I I ] | | | ] ]
. u=2.5m/s : I. e. When the ratio of F/D is high
2.5 ] )
, the solution based on central
20 |- Numerical solution (CD) ~ difference scheme appears the
wiggles oscillations (F/D=5)
o 15 ) .
[‘0 M

0.5 —-. _ Exact solu liN

| L L | | \ ] |
Tf B s N DU A Y N& - 0%, .. 1n..

- _ . -

-SRI A -

These oscillations are often called ‘wiggles’ @b

the agreement with the analytical solution is clearly not very good




(iii) Case 3: u = 2.5 m/s with| 20|grid nodes [ (F/D=1.25)]
ox =0.05, F = pu=2.5, D = I"/é.r = 0.1/[}.05 = 2.0

grid refinement has reduced the F/D ratio from 5 to 1.25.

| | | | !

1.0 _
Numerical solution (CD)
0.8 i~ =
Exact solution _
¢ 0.6 - — Grid Independence
0.4 |- -
0.2 - —
u=25m/s

1 | | |

0.0 0.2 0.4 0.6 0.8 1.0
The centr: Distance (m) vhen the F/D ratio 1s

low,

The agreement between the numerical results and the analytical solution 18 now

good.



5.4 Properties of discretisation schemes

 To avoid the appearance of wiggles in the central
difference solution, the discretisation scheme should the
fundamental properties as follows:

I ! ! |

: u=25m/ss
2.5

e Conservativeness |
e Boundedness sl

e Transportiveness _\"/T\N

| L i I l L ]

—_— :

Phemnce-im . D E

- '{} ‘} o5t - ‘..\.- fl_‘vh_ o D- é.'_?._-' g__gsu'-v AL



5.4.1 Conservativeness

To ensure conservation of & for the whole solution domain in
the flux of @ leaving a control volume across a certain face must be
equal to the flux of <I>enter|ng the adjacent control volume through

same face I. e. —
¢ rei o F“’I rel o l_‘“’?’ re.‘- = r“’dJ | I'n= I‘out |
®linear interpolation t--\-. 4 - S . iy
¥ EaRate o----""1" B ®

T4 dr

—-r M] + -Tr (¢"4 — ¢'3)] = {gB — 44 Linear function
- ox i " ox 7 d g — ¢ 4 Quadratic function



5.4.2 Boundedness

a sufficient condition for a| 7=—"- 3%

: j=1 alu

> lams| [ <1 atall nodes
lap| | < 1atone node at least

Scarborough (1958)

The matrix form of the equations set is

(20 =5 0 0 O0][7n] [1100]
-5 15 =5 0 0||T; 100
0 -5 15 =5 0||T:|=| 100
0 0 -5 15 -5||Ts 100
0 0 0 -5 10)|7s] | 100

Discretization equations
a‘.HT az'jT + a T 'L b + s VTH = Cz C 11 L. X
N @ [=—->-T

J
& =1 %

amTy +appTs + @l + 0 + {I-.,-‘TN C'w



4.53.2 Gauss—Seidel lteration
Discretization equations

anTy +apT, +apTs + o +a, Ty =C,

NGy
4

y 7=l by

ay T, + apTy + anTs + 4+ apyTy = C C a
1.?. | ?-2 _.33 ‘ LN..'\ .zi i;;: i
apn Tl + ﬂmTz <+ amTj + - 4+ ﬂmvTN = C;'l"
Application of the Gauss-Seidel method to the system of equations represented
by Equation 4.51 is facilitated by the following procedure.

1. Aninitial (k = 0) value is assumed for each temperature T,. Subseguent com-

putations may be reduced by selecting values based on rational estimates.
C- i-1 .
M= N A
AT, T

a, o4,

7

2. New values of T, are then calculated by substituting assumed (k = 0) or
new (k=1) values of T; into the right-hand side of Equation 4.55. This step
is the first iteration (k = 1).

T, =
(1 i ) 0y _ (1 (0
IO =23 N0 _® _A7O 7
t 7=l a:'z'

i)

3. Using Equation 4.55, the iteration procedure is continued by calculating
new values of 77" from the T}" values of the current iteration, where 1 =
j =1i—1,and the T;*"" values of the previous iteration, where i + 1 =j = V.
C. —ta, . Noa. _
=2 N Yt -1 — Ky _ lk=1)
T—E ag; E a T} 2 a; T-f AI—'} T-f

j=1 " i

where i = 1, 2, ..., N. The superscript k refers to the level of the iteration.

4-To whatever extent possible, the equations should be reordered to provide
diagonal elements whose magnitudes are larger than those of other ele-
ments in the same row. That is, it is desirable to sequence the equations
| i I
such that Ea“; > |r.z,2 N T !a”A; ayy| = |a21 ,» 323 awi; and so on.

LELILIENE |




5.4.3 Transportiveness |Pe =RePr = ux/a|

Convection-Diffusion Problems
® Definite a non-dimensional cell Peclet number Pe

as a measure of the relative strengths of convection and diffusion
F  pu the convective mass flux per unit area

Pe =& =re=
D F/ Ox diffusion conductance at cell faces -

(] Pe=-0 pure diffusion

Pe > pure convection

- Direction of flow

F = pu (Kgis m?)

cool fluid

hot plate

e

E

D:.L (Kgim - s]

® The relationship between the magnitude of Pe and the
directionality of influencing is known as Transportiveness



5.6 The upwind differencing scheme
@ One of the maior inadeauacies of the central differencing scheme is its inabilitv to
identify flow direction.

Finite volume method for 1-D steady state convection and diffusion

be
dw Dy
: ¢'P q)r
| F = pu(Kg/s m?)
Ly, -'_:_-_ “I+ u,. l—\
' e
_'IF v P € ;r_i: D= 5— (Kg/m ¢ s ]
» E.Iww wap P Bxp, o SI;E I

(1) When the flow is in the positive direction,

uy >0, ue > 0(F, >0,F,>0) ¢, =y and ¢, = ¢p

discretised equation F.¢p — Fudpy = De(pr — dp) — Du(Pp — b )
(Dw + De + Fe)pp = (Dw + Fu) by + Dot

(Dy+ F,)+ D, + (F,— F.)|¢p = (Dyw + Fy)dy + D



When the flow is in the negative direction,

¢e ¢’E
bw dp :
| | F = pu(Kg/s m?)
ty ~— v, r
Te D= — (Kg/m-«s]

dx

u, <0, u, <0(F, <0,F, <0)

¢w:¢Pmd¢e=¢E

discretised equation |z _ g o _ p (b —b,) - Du(dp— byp)

W Fedp — Fudp = De(dr — ¢p) — Du(dp — dw)

™ (D, +(D.—F.)+ (Fe—Fy)

“® (D, +Fy)+ D+ (F,— Fy,)

¢’P - Dwﬁt’w T (De - FE)¢’E
ff)P = (Dw + FW)ﬁbW + D ¢



appp = awdy + apPg

with central coefficient

ap = aw + ag + (Fe — F.,)

aw ag
F,>0 F.,>0 D, + F, D,
» FW{OIFE{:O D‘p DE_F'

A form of notation for the neighbour coefficients of the upwind differencing
method that covers both flow directions is given below:

dw | dg

D,, + max(F,, 0) | D.+ max(0, —F.)




¢— ¢y _ exp(pux/T’) —1

b, — ¢y exp(pul/T) — 1

Fig. 5.12 Comparison
of the upwind difference
numerical results and the
analytical solution for
Case 1

1.0

0.8

Numerical solution {(UD)

0.6 Exact solution
¢
0.4
0.2
. | ;
0.0 0.2

0.4 0.6 0.8 1.0

Distance (m)



(11) Case 2: u—25mf'swﬂh5

erid nodes
2.5,D=1/6x=0.1/02=05 Pe=>5.

= pu =
Node Distance Finite volume Analytical Difference Percentage
solution solution error
1 0.1 0.9998 0.9999 0.0001 0.00
2 0.3 0.9987 0.9999 0.001 0.01
3 0.5 0.9921 0.9999 0.007 0.70
4 0.7 0.9524 0.9994 0.047 4.70
5 0.9 0.7143 0.8946 0.180 20.15
T T I
1.0 * *— -] T T T T T T T
/(. 5 u=25m/s
25 -
08 I~ Numerical solution (UD) — :
L] 20k Numerical solution (CD) .
¢'0.6 — —
//, o 1.5 -
04— Exact solution ] ' 0
2 =25m/s B 0.5 F Exact soluuN \
I i ! ! |

0.0

0.2

0.4

0.6 0.8
Distance (m)

1.0 "

i

Y

. nd,;v“- né.k

T ;I:l""’l?

The central differencing scheme failed to produce a reasonable result with the same
grid resolution. The upwind scheme produces a much more realistic solution that is,
however, not very close to the exact solution near boundary B.

The resulting error caused by upwind method has a diffusion-like appearance (false diffusion)



5.6.1 Assessment of the upwind differencing scheme

Conservativeness

¢ = 100 Boundedness

Transportiveness

- Direction of flow
—

g }
w

Since there is no_physical diffusion the exact

0. K.

0. K.

0. K.

Pe-0 pure diffusion

Pe -« pure convection

|

solution exhibits a step change of ¢ from 100 to zero when the diagonal X-X

crosses the solid diagonal.



5.7 The thl"id differencing scheme Spalding (1972)

The hybrid differencing scheme is based on a combination of
central and upwind differencing schemes.

P F pu the convective mass flux per unit area
e A —— ——
D TI'/ox  giffusion conductance at cell faces

® for small Peclet numbers (Pe < 2) pu<al/ox
The central differencing scheme accurate to second-order

»3) a central difference formula with second- order accurate. O(Ax?)

B(x+ Ax) — plx — Ax) = z(g‘*") Ax+(‘;"f) &y

(%) ez tv o

o for large Peclet numbers (Pe 2> 2). o u>2I/0x

The upwind scheme s accurate to first order
but accounts for transportiveness




PE

¢W ¢’w
: op de
] . 1
| |
]
] ]
]
]
] ]
uw ......... ue
| —- — ;j;_;_;__'_t_;_;_,jj;,;_;_;,;_:_'__'__:__'_'.,:_:,:g!:,'_:,'._:_',:_:_:_:_:_:_'__:_:;::t::.:..': ..... = 4
w P E
| Sxm I 6).'.,,9 | 8.'!9,. I i 81.'-1:' I

The hybrid differencing formula for the net flux per unit area through the west face is
(i) for low Peclet numbers |Pe <2 using central

differencing for the convection and diffusion terms
L g | (SR S ER)

2
qw:Fw[§(1+F;)¢W+E(1_P_%)¢F] for —2< Pe, <2
(i) when | Pe |> 2 using upwind differencing schemes
for convection and setting the diffusion to zero
'?w=FwAw¢ﬁf for .PEWEZ ¢, = ¢pand ¢, = ¢
gw = FuAwdp for Pe, < -2




for steady one-dimensional convection—diffusion
the hybrid differencing scheme can be written as follows:

the discretised equation . o i
apdp = awdy +agds | . | .. |
ap = aw + ag + (Fe — Fy) wﬂ sxww:: ax.,p,__: 55 '-‘ Sree T
aw ar
max {Fw, (Dw + %’—), 0] max [—Fe, ( . — %)a 0]
dw ag

D, + max(F,, 0) | D.+ max(0, —F,)




5.7.1 Assessment of the hybrid differencing scheme

The hybrid difference scheme exploits the favourable properties of the upwind and
central differencing schemes. It switches to the upwind differencing when the central
differencing produces inaccurate results at high Pe numbers. The scheme is fully
conservative and since the coefficients are always positive it is unconditionally
bounded.e Tt satisfies the transportiveness requirement by using an upwind
formulation for large values of Peclet number. The scheme produces physically
realistic solutions and is highly stable when compared with the higher order schemes
to be discussed later in the chapter.*Hybrid differencing has been widely used in

various computational fluid dynamics (CFD) procedures and has proved to be very
useful for predicting practical flows.®Ihe disadvantage is that the accuracy in terms

of Taylor series truncation error 1s only first-order.




5.7.2 Hybrid differencing scheme for multi-dimensional
convection-diffusion

The discretised equation that covers all cases 1s given by

apPp = awdy + apPp + asps + andy + apPp + arPy

with central coefficient

ap = aw + ag + as + ay + ag + ar + AF

and the coefficients of this equation for the hybrid differencing scheme are as
follows:

.................................................................




One-dimensional flow Two-dimensional flow Three-dimensional flow
[ w [ W I Fw
awy | max|F,, (Dw +FT) 0] max | F,,, (Dw+%—), UJ max | F,, (Dw+?), 0]
I F, I F, I F.
ag | max|—F,, (D,3 ~ -—25), D] max | —F,, (De - ?e), 0} max | —F,, (D,, — ?), 0]
i F [ F,
as | max | Fy, (Ds+?j), OJ max | F,, (D, +?), 0]
ay | - max | —F,, ( " —523), 0] max | —F,, (D,, —%), 0]
[ F
98 | bottom - max | Fy, (Db +*§£), 0]
I F,
ar | top - max | —F;, (D, --2—'), 0]
AF | F,-F, Fe—F,+F,-F; Fo—F,+F,—F,+F, —F,

In the above expressions the values of F and D are calculated with the following
formulae:

Face | w e s n b !

F | (pu),Aw | (pu) Ae | (pv),As| (pv),4n| (pW)pds| (pw) A
rw re‘ I_‘s rn rb r.r

D Ay A, As Ap A s
Oxwp OXpE dysp Oypn ozpn © | Ozpr




5.8 The power-law difference scheme Patankar (1980)

8 If 0 < Pe < 10 the flux is evaluated by using a polynomial expression
gw = Fuldw — Bu(@p — dy)]  for0 < Pe <10
where B, = (1 — 0.1Pe,,)’ /Pe,,
diffusion is set to zero when cell Pe exceeds 10.
gw = Fo.oy for Pe > 10

o The power-law differencing scheme of Patankar (1980) is a more accurate

approximation to the one-dimensional exact solution and produces better results
than the hybrid scheme.

F.¢p, - F‘H"q.ﬁw = D.(¢bg — ¢p) — Dw_(‘f’F — ®w)




for steady one-dimensional convection—diffusion

o [The power-law differencing schemejcan be written as follows:

- : - 73
. N - dw Ow
the discretised equation B
ﬂP ¢P = ﬂ W ¢ W | + ﬂE ¢E — B -_J:EE;;1’_'.iiii:i;ii‘f;;j':jf'_;;'_"_f;i'i;i:':?;f'_T::::';:::?;;‘:::::;:‘::;:::::;::;:+ e | +
W P | ¢ E

HP p—— aw + HE + (FE — Fw) :waw;!: ﬁxw,.p:!::_ Sxp, - Ox,p ..-:!

aw — D,, max [D, (1 — {]+1|Pew|}5- + max[F,,, 0]

ag — D, max[ﬂ,(l —ﬂ.l|PeE|)5} + max|[—F,, 0]

The power-law differencing scheme is more accurate for one-dimensional
- problems since it attempts to represent the exact solution more closely.

FLUENT version 4.22, use this scheme as the default scheme

aw ag

D,, + max(F,, 0) D, + max(0, —F,)




5.9 Higher order differencing schemes for convection —
diffusion problems

@ [he accuracy of hybrid and upwind schemes is only first-order

in terms of Taylor series truncation error (TSTE).
e the first-order accuracy makes them prone to _
numerical diffusion errors.

® Such errors can be minimised by employing higher order discretisation.

®Higher order schemes involve more neighbour points and reduce

the discretisation errors by bringing in a wider influence

& The central differencing scheme which has second-order accuracy

proved to be unstable and does not possess the transportiveness property.
do not take into account the flow direction are unstable and, therefore,
e  more accurate higher order schemes, which preserve upwinding
for stability and sensitivity to the flow direction, are needed.




5.9.1 Quadratic upwind differencing scheme: the QUICK scheme
73 8L 2. O @3 Quadratic interpolation (2br2 44 BE t44- Leonard (1979)

uses a three-point upstream-weighted quadratic interpolation for cell

dw R face wvalues.
q}ufw I P ¢e ¢'E EE

1 Oy

i ]
l .
l l
i §
’ .
! :

uwl I H,E |
WwWw W w P e E EE

when u,, > 0 and u, > 0 a quadratic fit through WW, Wand P is

used to evaluate ¢, and a further ounadratic fit throuch
- ‘through W, P and E to calculate ¢,.
D, =1(DPp, Dy, Dyy)

6 3 1
O, = f(CDW’ Dy, CDE) {'i}fﬂr_‘e Z_S'fﬁf-l +§¢'! ﬁ§¢i'2




6 3 1

Prace = §¢’f-1 + g(f’f - §¢f-2 -
6 3 1
When u,, > 0. @, = g‘f’w +"8‘¢'P - §¢WW
6 3 1 e o
When u, > 0, ¢e:‘§¢P+‘8'¢’E""8'¢W wwW W w P e E EE

F.¢, - waﬁw = D (g — ¢p) — Dw_(‘f’? - dw)

6 3 1 6 3 1
[Fe(§¢P+§¢E—§¢W) —Fy (§¢w +§¢P—g¢w)]
= ﬂe(¢f — ¢’P) - Dw(‘f’;* — ¢'H’)
[ﬂ,., - %F,., + D, + gf-}] dp = [.D_, + ng + éF] dw

3 1
+ [-Dr _EF'] ¢ — Ewaf*"w

appp = awpy + age + aww Py



This i1s now written in the standard form for discretised equations

3 6 6 1
[DW—EFW+D¢+EF£:|¢P: lD“_.‘I‘EFw‘I"EFH]:ﬁIP'
3 1

+ [ﬂg_EFf]‘i:E _EFw*ﬁ"H'I:F

» .ﬂFpr = awQy + ap P + aww Ppw
when u,, > 0 and u, > 0

aw ag adww ap

Dw'f'ng‘l"%Fe Df"_ﬁlc-‘e ‘“EFw HFF+‘IE+HW+(FE_FW)

bee

EE



For F,, <0and F, < 0




¢ ForF, <0and F, <0

F.p, - wai;f»‘w = D¢ — &p) — Dw_(¢’F - dw)

6 3 1 6 3 1
[FE(E¢E+§¢’F _‘8"'3555) _F“'(gd}.ﬂ +§¢w — "g“(i’gf’)]
= De(¢g — ¢p) — Du(dp — dw)

appp = awdy + apdp + ags Prr

aw ag age | ap

L 3 6

' 1
Dw+*3"Fw De-gFe—ng EFe aw + ag + agg + (F, — F,)




Summary

The QUI&K scheme for one-dimensional convection—diffusion problems

can be summansed as follows:

appp = awdy + acdr + aww Py + apedpr

with central coefficient

ap = aw + ag + apw + agg + (F, — F,,)

and neighbour coefficients

Standard QUICK

aw aww ag age 6 1 3
aw Dy + = tyFy + = 0eFe + = (1 = a,)F
D i—6 F +1aF ! F D 3 F, 1 F, 1 1 F 1 : : :
w T Sl y + =Wl == Ud T o %elle — —U&e P B Ral? £Y ¥ o
8 8 8“ € Ba { @ ) e 8( & ) aww _§g_wa
3 6 1
3 1 a Dy — ZteFe — = (1 — 0 )Fe — 2 (1 — ) F
+2(1 = w,)F —~(1 —a)F, : BT 8 s
8 8 agg 1(1_(12)}:‘2
8
where a, =1 forF,, >0anda, =1forF, > 0

Lw

OforF, <0anda, =0 for F, <0

when u,, > 0

and u, > 0

For Fy, <0and F, <0

aw ae dww dp
Dy +§Fy+{F. |D.—3}F. | —LF, | aw + ag + apw + (F. — F.,)
aw ag Qgg | ap
3 6 1 1
Dw‘f‘*s"Fw De-gFe_ng EFe aW"I’aE‘l"'aEE"‘(Fe_Fw)




Comparison with the analytical solution
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5.9.2 -Assessmant of the QUICK scheme

® The scheme uses consistent quadratic profiles — the cell face values of fluxes are
always calculated by quadratic interpolation between two bracketing nodes and an
upstream node — and is therefore conservative.®Since the scheme is based on a
quadratic function its accuracy in terms of the Taylor series truncation error is third
order on a uniform mesh®The transportiveness property is built into the scheme as
the quadratic function is based on two upstream and one downstream nodal values®If
the flow field satisfies continuity the coefficient a, equals the sum of all neighbour
coefficients which is_desirable for boundedness.

The QUICK scheme is therefore conditionally stable.




5.9.3 Stability problems of the QUICK scheme and remedies

® Since the QUICK scheme in the form presented above can be unstable due to the
appearance of negative main coefficients it has been re-formulated in different ways

that alleviate stability problems.

Hayase et al (1992)
last authors generalised the approach for re-arranging QUICK schemes and denved

a stable and fast converging variant.

5.9.4 General comments on the QUICK differencing scheme

L  Exact solution N
80 |- QUICK 50 x 50 7| ® It can be seen that the QUICK
o 4 scheme matches the exact solution
20| . much more accurately than the

i
\ PWIND30x30- | upwind scheme on a 50 x 50 grid..
\

ﬂ' [— e -
| l | | | I |
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Distance along diagonal X — X




511 Summary

e All the finite volume schemes presented in this chapter describe the effects of
simultaneous convection and diffusion by means of discretised equations whose

coefficients are weighted combinations of the convective mass flux per unit area F
and the diffusion conductance D.

e The discretised equations for a general internal node for the central, upwind and
hybrid differencing and the power-law schemes of a one-dimensional convection-
diffusion problem take the following form:




appp = awdy + ardg

with  ap = ay + ag + (F, — F.,)

o The neighbour coefficients for these schemes are

Scheme

dw

ag

Central differencing

D, +F,/2

D, — F./2

Upwind differencing | D,, + max(F,,, 0) D, + max(0, —F,)
Hybrid differencing | max[F, (Dy + F/2), 0] max|—Fg, (D, — Fe/2), 0]
Power law D,, max [0,{1 _ 0.1]P€w1)5] D, max|0, (1 - 0.1/Pe,|)’

+ max(F,, 0)

+ max(—F,, 0)




e The boundary conditions enter the discretised equations via source terms. Their
treatment is specific to each discretisation scheme.

e Discretisation schemes that possess conservativeness, boundedness and trans-
portiveness give physically realistic results and stable iterative solutions:

— The central differencing method 1s not suitable for general purpose convection—
diffusion problems because it lacks transportiveness and gives unrealistic
solutions at large values of the cell Peclet number.

— Upwind, hybrid and power-law differencing all possess conservativeness,
boundedness and transportiveness and are highly stable, but suffer from false
diffusion in multi-dimensional flows if the velocity vector is not parallel to one
of the co-ordinate directions.

e The discretised equations of the standard QUICK method of Leonard (1979) have
the following form for a general internal node point:




appp = awdy + acPg + aww Pyw + AEEP ik
ﬂp=aw+ﬂE+HW+HEE+(Fe_FW)
The neighbour coefficients of the standard QUICK scheme are

where

Standard QUICK
6 1 3
adw Dw+§fIwa+§dng+§(l —Dﬂw)Fw
1 F,
a = = Oy
i 8
3 6 1
ag De = Z0eFe = 2 (1 = ae)Fe — 2 (1 — aw)F
1
arE 'g(l — o) Fe

with o, =1forF, >0anda, =1forF, >0
o, =0 forF, <0Oanda, =0 for F, <0

— Higher order schemes, such as QUICK, can minimise false diffusion errors but

are _less computationally stable. _
Nevertheless, if used with care and judgement the QUICK scheme can give very

accurate solutions of convection-diffusion problems.




Chapter 5

Turbulence and its Modelling
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Fig. (a) Laminar flowshear stress caused by random of molecules (b) Turbulent flow as a
series of random, 3-D eddies
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Turbulence

The nature of turbulence:

irregularity, randomness

diffusivity -- rapid mixing and increased rates
of momentum, energy and mass
large Reynolds numbers

3-D wvorticity fluctuations

dissipation -- viscous force perform work which
increases the internal energy at

the expense of kinetic energy of
the turbulence

continuum phenomenon

feature of the fluid flow



Origin of turbulence

turbulence arise from instabilities at large Re
e.g pipe flow becomes turbulence when
RepD > 2000
boundary layer with zero pressure gradient
Req > 600, d 1s the displacement

thickness
it cannot maintain itself, energy from the

surrounding, commeon source of energy
shear in mean flow, thermal ...

i -
. = "
b __..-.'_. e o
[._l T rmeills el __-!'- | ]
Figrr -

o0 P o |
e L
e '-l'-:-"-ﬁu-w--.ll T




Random,

turbulent fluctuations
Turbulent

s e

Turbulent . Y
bursts
£ 2 N
~ Transitional
¥
K
1
Laminar
0 ¥
f, sec

Transition from laminar to turbulent flow in a pipe.

4000

VD/v

2000

Re

0



A1100]9A

Laminar Flow
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Steady turbulent flow

u(t) =u+u'(t)
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The time-averaged, «, and fluctuating, «’, description of a parameter :
for turbulent flow.



3.1 Whatis turbulence?

_\_\_\_\_\_‘_‘—‘—-—\_
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T
<
if = time-averaged - }
(or mean) value 7
_‘_,..-“’
_o—"'"f;
—
L )
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'rl:\ I‘:‘ + T [

The time-averaged, u, and fluctuating, «’, description of a parameter o turbulent flow.

o(f) =D+ ¢'(1)

— steady mean component @ +a time-varying fluctuating component ¢’



3.3 Effect of turbulence on time-averaged Navier-Stokes
equations

Reynolds equations N
Definition : the mean @ of a flow property ¢ b = 1 [ @(t) dt
0

At

o(t) =0+ ¢'(1)

e The time average of the fluctuations ¢’ is, by definition, zero:
At

— 1
muﬁgjwmmso Ao A M

0

e the root-mean-square (rms) of the fluctuations:

- A 1 1/2

@W:M= El;[(fp’)zdr




(1) Jo,n



® The kinetic energy k (per unit mass) assoctated with the turbulence
| /o —  —
—_— 2 2
k = > (u + Vi + wQ)

e The turbulence intensity T;

® The rule of combinations, derivative and integral of two fluctuating
properties @=®+¢ & =y 1y

— _ E}}E 5700

= @; =" |pds=|0d
V' = &=9 Os 33’.,[.;05 l ’
D +

Y. ov = OV + ¢'Y'; oF = OY; ¢'¥ =0

+ Y




ea=A+a & o=®+¢ a:afluctuating vector quantity

diva=divA; div(pa) = div(pa) = div(PA) + div(¢'a’);
div grad ¢ = div grad ©

eu=U+vu=U+u; v=V+V; w=W4+w, p=P+p

ou OU | | B
= = *E; div(uu) = div(UU) + djv(ur“r)
1dp 10P

EE};_—EE; vdivgrad u =vdivgrad U



Applying the time average on the instantaneous continuity and
Navier-Stokes equation for an incompressible flow with constant

VISCOSItY u=U+4viu=U+u;v=V+V,w=W+w,p=P+p

divu =0

%E-Fdw(uu) —é % + v drivgrad u

g:q_ div(vu) = _% %4- v div grad v

?91': _d-fp(i,pu) = —;1}- %+ vdivgrad w



l oUu _ 1 OP _
§+dw(UU) = —E E—!— vdivgrad U
oV 1 OP
or : N : v
gr +aMry) b oy T erad

oW _ 1 oP ,
ET"!‘JIV(WU)-F —“E"g-!-v
Mynolds equation—Turbulent flow equation for incompress OWS

U 1 6P 02 ouv Ouw
_+d1v(UU)=———'—+vdIVgrad U+ l_ Ox — ay — Oz

ot p Ox

o 1 P , v VI VW
—a}-+dw(VU):—E§y—+vdwgrad V + | — P By 57 _
ow 1 6P ouw VW w2
W+d;v(WU)_~;§+vdwgrad W—’r-[—- pe By %




< Continuity §u+§v oW ﬁ(u+u)+ﬁ(v+vl)+ﬂ(w+wl)
X Oy 01 OX Yy 01

%

U OV OW
+ + =
ox o0y 01

ﬁu' oV’ é’w
O X ﬁy o1




Du 6( —p + Tyy) N Oty Ot

o~ Ox oy * 0z + Sue
“*Momentum Equation for turbulent flow
p%\t/+p— uI u g+Vp+;N2V
/ (914’2 auv’_auw’
DV
pﬁ:pg VD+V bj ooV NV VW
ox by oz )
— OU; é’Uj U _[_au'w'_aw_awﬂ
» ] Ox; ﬁx, i) x oy o |
Renolds Stress
youadu o
et =t ) o = iy =
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Fig. (a) Laminar flowshear stress caused by random of molecules (b) Turbulent flow as a
series of random, 3-D eddies



Reynolds stresses --The six extra stresses

We need either information or a theory to evaluate these terms

Txx = —PU Three normal stresses

] o VW
Ty = pV’ [ ox Oy 0z

1,, = —pw'? oWV O W
. Ox oy 0z

Ty = Ty = —pPU'V T

oA P [ oww ovw ow?

TH:T;‘:= _pu-"w’ ax 8}7 az-

Ty: = Tpp = —PVW  Three shear stresses



Similar

The time average transport equation for scalar ¢

ov Ry — 31?(?_87(?_3#90'
E-{— dw(fDU)_ = div(['g grad ®) + [ B 5y % | + So

oU 1 oP ou?  ouV oUW
E+dw(UU)——E 5;+vdwgradU+ o oy 5 ]
oV 1 8P oy N VW
i : e ' V4 | — — —

5 + div(V'U) > By + v div grad +_ [ e By 5
oW 1 OP ouw VW  ow?
L 4 di — - — — _

5 + div(WU) > o2 + v div grad W+[ o 5 3%




DV
PTt:Pg+VV+V'Tij

Tjj = H Lui+Luj = uij'u ;'
L ox;  oxi i
Renolds Stress

Continuity Reynolds (Turbulent) Stresses

8 e ’ 7 2,
= +div(pU) = 0 (un knOV}/n) (_fl]‘ 2

Reynolds equations

Table 3.1 Turbulent flow equations for compressible flows

Voo oo - -
pl)) . . oP #B(pu ) _B(pu"v") ~ d(pu'w) )

o + div(pUU) = —a + div(y grad U) 4 [ e 3 | % - Sitx
ap¥) | . _ 0P _O(pwV) 2(n7) _9(pvW)
T+dzv(pVU) = —Ey-——%-dw(y grad V) + { pw Y % HSwy
W) | o 0P o) _ (o) _O(e7)

o + div(pWU) = ~ % + div(y grad W) [ e 3y o + Su:

10 unknown u, v, w, p, o B g —pAV W —pIW
Scalar transport equation |
o(p®) , . o o(p'y’) 0(pVe') O(pwe')

S + div(p®U) = div(I'y grad ®) + [— > oy % + So



A pu? Y W
Reynolds stresses —[—- o LE’%”—“”;‘-;"”}
e e Ty Ta o) _2(07) o
ORI [ = I B 2

Te Ty T

suffix notation

;= —pud = p 5U;+3izﬁ- -
» T\ oy ax (Boussinesq (1877))

tuthulent stresses increase as the mean rate of deformation increases

e.g. similar to lamilar flow viscous stress
Ou; Ou; (0w  Ouw) _ (Ou O
T';’:”e';’:“(axj*axf) T‘Z_T”’““(ax2+ax, =Moo

U, ﬂddy ‘JiSCﬂﬂity (Pa s) v, = uf/p k kinematicl eddy ViSCOSity m?/s




3.5 Turbulence models - Reynolds stress equation models
"."We need either information or a theory to evaluate Reynolds stresses

Classical models Based on (time-averaged) Reynolds equations
1. zero equation model - mixing length model
2. two-equation model — k—¢ model
3. Reynolds stress equation model
4. algebraic stress model

Large eddy simulation Based on space-filtered equations

Temperature

The classical models use the Reynolds equations developed in section 3.3 and
form the basis of turbulence calculations in currently available commercial CFD
codes. Large eddy simulations are turbulence models where the time-dependent
flow equations are solved for the mean flow and the largest eddies and where the
effects of the smaller eddies are modelled. It was argued earlier that the largest
eddies interact strongly with the mean flow and contain most of the energy so this
approach results in a good model of the main effects of turbulence. Large eddy



3.5.1 Mixing length model

Similar to laminar flow

The Eddy Viscosity

Ju - p, =ceddy viscosity., 'y = eddy diffusivity

. . Lt | | ﬁu ﬁu
Mixing Length  —U'v' = (CONSE)Up e Vs = (COHSt)(Il ayj(b é’yj
Reynolds stresses
oU

Ty = Tyx = —pu'V = plL | —

dU|dU BU o
M@%@*%”ﬁ




Prandtl’s mixing length model.

Consider a plane, incompressible, and steady mean flow over a wall

."'3 Taylor series:

Iy _
i 1 ulyst &) =u(y,) £ gu lymy + e
. i ! f':)) f?il The wvelocity difference, hcnc::- the fluctuation, are
» N R t.«: ; Aaly) =u'(y) =+ L % ey
3

AARRRRRRRRRRRRGERRRRRERREREREEESSSS > X

ou | p ~ pl* ==
» H N[31§yJ I"i,-f'| o |U1|

Al ou
» —uU'V' = (COnSt)UrmsVrmS (COHS’[)(I1 gyj (Iz ﬁyj

Gu

ou
oYy

aTaa_

au
5 |y » = plt | =

Ty = Tyx = —puV = pb*

2|8u
~ p(xy) 5




. Prandtl’s mixing length model. ¢ &y

Mixing length is not a constant. Prandtl suggested that
Ln=Kky |
expermmental, k = 0.4

k 1s called the von Karman mixing length constant

Reynolds stresses

o =t =~ = pB [0 ‘f;’ 0 S0 w1 o8 20
ou 1 ou
=k 12192~ (7
€ =ky W u~p oy (<Y) oy
o ou

o —pV’(D’ — }1,/0'; Fy‘ o~ pl* = oy

o, of 0.9 in near wall flows, 0.5 for jets and mixing layers and 0.7 in axisymmetric
jets.




Prandtl’s mixing length model.

® The boundary layer eguation for turbulent tlow over a flat

plate
-3 dp 3 sopman) X
F’[”ax“’ay}‘ dx ' dy P oy

Consider paiallel flow, the governing equation 1s

.,E_.. ( 4 0V )@ —_@ —_
dy H o+ PUT dy| dx
Let us introduce the dimensionless variables as follow
. o a _u/U

u = — =
U Jtlp Ao /2

YAl To /P YUenlCe/ 2
= 0 = - u u=0.99u,~u,

£ Yur
Nominal Limit of

Boundary Layer -
= i
Region (short)

The dimensionless equation is
— _’| I‘_ Turbulent 5

v +
-d—{(l + ijd—{} =0 |
d‘j‘! v d}’ - Laminar | ‘ y

Integrating once, we obtain
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Viscous Buffer
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Ti iti
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Figure 10-3 Turbulent boundary-laver profiles in wall coordinates (data of Anderson er ai.'?).



(1) the viscous sublaver 1 >> vy

'UT du-l- E -0 v molecular viscosity
]. + — + — ]_ v VT eddy viscosity
v /dy du’ .
T=1=u =y
dy

(2) In_the fully turbulent region, 1 << VT

the eddy diffusivity is much larger than the molecular viscosity,

Ut Ut du’
— — oo . =1
1Y) gh) d},"'
Substituting the Prandtl's mixing length
a"' a n i u-l- ﬁ {l ﬁ .lIll Uw
- 02 Uj_ g2 u Ug = ‘Ll_ = =
e UT= ﬂ,m | "a',? !" ﬂ,m a}’-'- 'U/U»,; T Al TP Cr /2
Vr _ g2 aE1| > uf du’ +_ YU ¥ T.}fpu}’U cr/2

, dy kv
ntegrating, N
g g U.:%Q«ﬂy.#‘l‘c

This is called the law-of-the-wall. -




Ty = = —puV = pl* |—

ou|oUu

BU . 23U| 23U
- ~ plc |—|~ —
o A 7 SR i UG P

o@<Table 3.3 Mixing lengths for two-dimensional turbulent flows

Flow Mixing length .1, L

Mixing layer 0.07L Layer width

Jet 0.09L Jet half width
Wake 0.16L Wake half width
Axisymmetric jet 0.075L Jet half width

Boundary layer (dp/dx = 0)
viscous sub-layer and
log-law layer (y/L < 0.22)

outer layer (y/L = 0.22)
Pipes and channels
(fully developed flow)

iyl — exp(—y™/26)]

0.09L
L[0.14 — 0.08(1 — y/L)*~0.06(1 —y/L)"]

Boundary layer
thickness

Pipe radius or
channel half width




Mixing length model assessment

Advantages

+ easy to implement and cheap in terms of computing resources

e good predictions for thin shear layers: jets, mixing layers, wakes and boundary layers
e well established

Disadvantages

» completely_inca _
¢ only calculates mean flow pmpfzmes and turbu]l:nt Shﬂﬂl’ strass

Jet Mixing layer

Fig. 3.8 Free turbulent flows

y/D = 3.4375



3.5.2 The k-¢ model
Definition:

w(n

e

instantaneous kinetic energy  k(t) = K + k

the mean kinetic energy K = %(Uz + V:+ w?)

the turbulent kinetic energy & =3 (W2 + V2 + w?)

ELIRL: e

the turbulent stresses. ¢; = | 1,

— Txx

Ty = pUuV =24 E; e

the rate of deformation €;; = | €yx

fluctuating campcnen\ €zx
eij(t) = Ey + e},

mean component,



the rate of deformation oU  ou

, oV o/
ej(t) =Ej+ €, @  el=Etd=7 5
oW ow

, ., fou av]  [ou oV

ex(t) = Exy + €, = enlt) = Eyy + €, =3 3y+5x +3 3y+3.1:

: _,[au ﬂWa_l_lrﬂu'_i_fiW"
EH(I]=E;z+€n=fzx(f):EH+sz“iLaz+a_rd 2|8z Ox
| [fov  ow]  ,[8vV  ow]
er(f) = By + €, = en(t) = En + &5 = 5|5+ 57| T2 5z oy

1y ,! 27

T =pUuV = ZzutEij T, =—puv = é’—H
Y

=pC, g(%% + %) 1, = eddy viscosity




Governing equation for mean flow kinetic energy K

V x M—F div(p¥V'U) = —?f—i—div[pgrad V) + [—

+ W

Reynolds equations

ot o

ot Oy

(pW)
ot

P
+ div(pW'U) = — % + div(u grad W) +

o) () ol

Ox

v s 3 _Fz - -
Ux 206Y) | 4ouu) = _8_5 + diviu grad U) + [_ (pu ) _O(pwv) _0(puw)

Ox

K=3(U+V+w?

]”m

_Opw'w) 9(
ox

W) _ a(?ﬁ)} s,

»f?(_g:{—) + div(pKU) = d:‘v(—PU 2uUE,) — pum) _
(D (1I) | (V) (V)

Rate of Transport Transport Transport | . i

change +of Kby =of Kby +df K by 1 r:uspnrt of

of K convection pressure :'sc:;z geyfmlds “

——————.

PH:H} . Elj
(VII)

Turbulence

T production

®  In high Reynolds number flows the turbulent terms (V) and (VII)
are always much larger than their viscous counterparts (IV) and (V1)



Governing equation for turbulent klnetm energy k
k=21W? +v? + w?)

v . the instantaneous Navier—Stokes equations

, Ou 1 Op
u x — ] = —— — ]
Fy —.f-dw(uu) p ax+vdi_v grad u
, av - 1 Op
V' X E—I-a'w{vu) > 5+vdwgradv
Ow 1 Bﬁ .
+ W’ x F+dw(wu) ~3 E+vdwgradw

k [
» A p ——= + div(pkU) = dw( -p'u’ + Z,uu’e" p%uf : ufu;-) — 2pej; . e — pu; “I Ej

- (l) (II) (- (1v) (V) (V1) (VII)
Rate of  Transport Transport  Transport  Transport Rate of Turbulence
change + of kby = ofkby + of kby + of kby - dissipation + production
of k convection pressure VISCous Reynolds stress of k

stresses .

| | : ~ —2ue;e; _ove e

le. HighRe  2pel.e); > 2uu €j; €= . = 2ve;€;




« Rate of Turbulence dissipation of k (V)

—2pe;;. € = —Eu(eﬁ +e2 + 2+ 22 + 23 + 2%)
The dissipation of turbulent kinetic energy is caused by work done by the

smallest eddies against viscous stresses

& The rate of dissipation per unit mass,

Tij = PW =24, Eij

—2ue;.e

1 i)

€ =
p

= 2ve. e.

m? /53
ij ~ij

when the Reynolds number is high, the viscous transport term (IV)
1s always very small compared to the turbulent transport term (VI).

l.e. High Re

Zpe’ i > 2uu’e;,

@ Itis possible to develop similar transport equations for all other turbulence quantities

including the rate of viscous dissipation ¢ (see Bradshaw ef al, 1981). The exact ¢-



Two model equations of k and ¢ for

The k-¢ model equaﬁﬂﬂS solving k and ¢

The standard k—¢ model (Launder and Spalding, 1974) has two model equations,
one for turbulent kinetic energy k and the rate of viscous dissipation ¢

" k=%(um+f3+wn‘) g:M:ZVe;je;j
P 132

« Definte: velocity scale 9 = '/2  length scale ¢ = —

2
o eddy viscosity p, = Cp3¢€ = pC, K C, is a dimensionless constant.
: €

1

—_ oU; 0U; k? aU; oU;
‘[l}- — --pufu} =2ﬂIEy — ﬂ,(axj + ax:') =PC;1 ?(Exj+3‘_.lt:;’)

@ 10 unknown u, v, W, p, —pu? _p2 —pﬁj—pw:. —pU'W. —pVW

Bark € kK p & &> ¥ £iF > B Reynolds stress



: . k?

eddy viscosity u, = Cp9€ = pC, —

s _ E
The standard model uses the following transport equations used for k and ¢:

k :
@ a(gr ) + div(pkU) = div -:—'.grad k] + 2uE; . E; — pe
k

2

d(pe) . .| H | £ £
@ Y + div(peU) = div [J—; grad 8] +C te Ez.”fEff Eu — Cyep T
Rate of change  Transport Transport Rate of Rate of
of kore + of kor e by = of k or ¢ by + production of — destruction
convection diffusion kore of kore

CF - 009, O = 1.00; 0, — 130, C[E = 1.44; Cge = 1.92



‘Tij = pui'u'j =2u,E

I

i = Boussinesci relationshii: :
To compute the Reynolds stresses with the k—¢ model

U, ao;) 2 2

—puiu; =l ( 5%, iy 3 POy = 21 Ey — 5 pkdy

8;j, the Kronecker delta (6; =1 if i = j and é; = 0 if i #))

Example i=j Forincompressible flow

the normal stresses Tax = —PU?, Tyy = ~pv? and 1, = —pw'2,

oUu oV oW
2H,Eﬁ=2ﬁr[6x+ay+ az] =2ﬂIdI'VU—-_-0




Boundary conditions

e Inlet: distnbutions of k& and ¢ must be given

e outlet or symmetry axis: dk/On = 0 and 9¢/0n = 0

e free stream: k=0ande=0

e solid walls: approach depends on Reynolds number (see below)

(1) fork and ¢ in internal flows can be obtained from

3 ! 3/4 Ll
k=3(UnTi)"; e=C, 7 £ =0.07L
1/2
Gn)”
Ti the turbulence intensity T =
Urer

[ charactenstic length of the equipment (equivalent pipe radius)



2) At high Reynolds number the standard k—¢ model

the universal distributions near a solid wall 30 < y} < 500

: 1 . vl Wik e
log-law u* =—In y'+B= Eln(Ey+} yr=ite s T
= . kz -i-_i_ l_l _ 'I:'l.r'rUm
the eddy viscosity formula , = Cp3¢ = pC, — S T
Then

U 1 12 3
ut = —=—In(Eyp); k=——; £ =—
Uy K z/ CP Ky

Von Karman'’s .cnnstant x = 0.41

the wall roughness parameter E = 9.8 for smooth walls

For heat transfer (Launder and Spalding, 1974)

Y .
S )Cppiz _ Jr.{f N P(Eﬂ)]
qw or. ¢




For heat transfer (Launder and Spalding, 1974)

T - Tw 11
TH = ! )Cppu = ::r-,.-'rj,[m'b + P(ET—J)}
qw Or,¢t

with Tp = temperature at near wall point yp or, = turbulent Prandtl number
T,, = wall temperature or) = puC,/I'r = Prandtl number
g = wall heat flux ['7 = thermal conductivity
C, = fluid specific heat at constant pressure



(3) At low Reynolds numbers
the log-law is not valid so the above-mentioned boundary conditions cannot be used.

The equations of the low Reynolds number k—& model.
Patel et al (1985)

—-(g—} + div(pkU) = div [(,u -+ ﬂ—') grad k] +2u,E;; . Ey — pe
k
6'5; ) + div(peU) = div [ (p. + E’-) grad 6] k2
] ° 2 #e = pCy Ju "
+Cicfi 7 2mE5 - Ey */C:JHP y

whveunctmns and Bremhorst (1981
[} 'US

2 20.5
~ - EI}J [1 - ﬁxp(—l}._I]IﬁSRE}.]] (I —1—}&;—)

= 9¢/v = kl/ E'-’) Re, = k'*y/v



k—e model assessment

Advantages

e simplest turbulence model for which only initial and/or boundary conditions need to be
supplied -

e excellent performance for many industnally relevant flows

e well established: the most widely validated turbulence model

Disadvantages

e more expensive to implement than mixing length model (two extra PDEs)
e poor performance in a variety of important cases such as
(1) some unconfined flows
(1) flows with large extra strains (e.g. curved boundary layers, swirling flows)
(iii) rotating flows
(iv) fully developed flows in non-circular ducts




3.5.3 Reynolds stress equation models (RSM),
(the second-order or second-moment closure model)

Several major drawbacks of the k—¢ model emerge when it is attempted to predict
flows with complex strain fields or significant body forces.(e.g. centrifugal force)

Reynolds stress Ry = —1;/p = w;

DR o)
Y :P@-+D§*E&'+H‘?+ﬂj

Dt
Rate of Transport Rate of Transport  Rate of
change of + of R; by = production + of R hy — dissipation

Ry = wu,  convection of R;

Transport
of Ry due of R;; due td
to turbulent rotation
pressure -
strain
interactions

Equation (3.45) describes six partial differential equations: one for the transport of

each of the six independent Reynolds stresses (2, uZ, i, iy, i, 4; and wid, )




the pressure—strain correlation term Ilj, and the rotation term £1;.

Rate of production of R;;:

Transport of R;; by diffusion:

oy BU;

+R;

oot} et
ax,, M O

)

e xm

aR;; ,
Dy = i Y —i) = div (:—l gmd{Rg:I)

with v, - ?"' - ,

C,=0.09 and & = 1.0
y

The diffusion term Dy can be modelled by the assumption that the rate of
transport of Reynolds stresses by diffusion is proportional to the gradients of

Reynolds stresses

Rate of dissipation of R;;:

&y

E =

— 2uei'jei'j
p

assuming isotropy of the small dissipative

— 2ve.e.

I}

eddies



Transport of R;; due to turbnlent pressure-strain interactions:

£
Iy = =Ci 7 (Ry — $kdy) — C(Py — 3P5y)

with C[ = 1.8 and C;—: =0.6
Transport of R;; due to the rotation:

Qy = =20k (Rmeitm + Rim€jiom)

wy 18 the rotation vector
€ijk the alternating symbol

= +1 ifi,jand k are different and in cyclic order

€ijk = —1ifi,jand k are different and in anti-cyclic order

= 0 1f any two indices are the same.



The six_equations for Reynolds stress transport are solved along with a model
equation for the scalar dissipation rate &.

De £ 2
— = d:'v(igrad E) + Cie — 2viE; . Ey — Gy, =

Dt o; k k
Rate of change  Transport Transport  Rate of Rate of
of ¢ + of e by = of eby + production of — destruction
convection  diffusion & of ¢

where C;;, = 144 and Cy = 1.92



The usual boundary conditions for elliptic flows are required for the solution of the
Reynolds stress transport equations:

» inlet: specified distributions of R;; and &
» outlet and symmetry: OR;;/0n = 0 and 9¢/0n = 0
» free stream: Rij=0and e =0
» solid wall: wall functions AN B PR
(1)The inlet distributions for R; :
3/2
k=3(UgT)5 e=Cl kT; ¢=0.07L;

wh? = uf? = k; uju; = 0(i # J)
the turbulence intensity T; and a charactenstic length L of the

equipment (e.g. equivalent pipe radius)



(2) at high Reynolds numbers wall-function-type boundary conditions
R; = uju, = cyk where c; are obtained from measurements.

(3) Low Reynolds number modifications to the models can be incorporated to add
the effects of molecular viscosity to the diffusion terms and to account for anisotropy

in the dissipation rate term in the R;;-equations.

Wall-damping functions i (= & — 2v(9k/2/8y)?)



Reynolds stress equation models assessment

Advantages

e potentially the most general of all classical turbulence models

e only initial and/or boundary conditions need to be supplied

e very accurate calculation of mean flow properties and all Reynolds stresses for many
simple and more complex flows including wall jets, asymmetric channel and non-
circular duct flows and curved flows

Disadvantages

e very large computing costs (seven extra PDEs)
e not as widely validated as the mixing length and k—¢ models

e performs just as poorly as the k—¢ model in some flows owing to identical problems with
ihe e-equation modelling (e.g. axisymmetric jets and unconfined recirculating flows)




—-—-=r,:,--t-u!;,-—~5,_-,--|—11,j—r-a£,~),'

Dt
3.5.4 Algebraic stress equation models (ASM)

assume that the sum of the convection and diffusion terms

of the Reynold is proportional to the sum of the
convection/and diffusion terms of turbulent kinetic energy.
Dy /g (m ] ( - )

Dt |k-transport (i.e. dw:}rerms]) <z '”i”j Ej—¢

Supmit Into the Reynolds stress transport equation
—L = Py+Dy—ey+ T+ Qy Q= —204 (Rimeitom + Rimejin)

oU; oU; £
Py =— (Rm 5;:—1 + Rjm E) II; = -C, I (Rrj - %Mff) -G (Pl’f - %‘P‘Sy)

inversion or iterative techmques if £ and ¢ are knnvm



Algebraic stress equation models

Thisis a set of six simultaneous algebraic

equations for the six unknown Reynolds stresses’ R;; that can be solved by matrix
inversion or iterative techniques if k and ¢ ar;/icnnwn. erefore, the formulae are
solved in conjunction with the standard kf/ model eqtations (3.34-3.37).

k .
@ Olpk) + div(pkU) = div [—'u—'grad/q + 2u,E; . E; — pe
ot Ok
O0(pe , Clu € g?
@ (8! ) + div(peU) = div [J—;grad 8] + C1.£E2_p,E§,— Eu — Cyep m

C, =009 o0r=100; 0,=130, Ci,=144; (=192




Algebraic stress equation models assessment

Advantages

e cheap method to account for Reynolds stress anisotropy
e potentially combines the generahty of approach of the RSM (good modelling of
ible) with the economy of the k—¢ model
e successfully applied to isothermal and buoyant thin shear layers
e if convection and diffusion terms are negligible the ASM performs as well as the RSM

Disadvantages

o only slightly more expensive than the k—¢ model (two PDEs and a system of algebraic
equations)

e not as widely validated as the mixing length and k—¢ models

e same disadvantages as RSM apply

e model is severely restricted in flows where the transport assumptions for convective
and diffusive effects do not apply — validation is necessary to define the performance
limits -




Turbulent Modelling
Reynolds-Averaged Navier Stokes (RANS) —
Solve for the mean values of all quantities, uic
predominant approach in engineering CFD packages.
Large Eddy Simulations (LES)
The turbulent large scales are explicitly calculated whereas
the effects of smaller ones are modelled using subgrid
closure rules. LES is particularly appealing for IC engine
applications, which is attracting more research efforts.
Direct Numerical Simulations (DNS)
Solve the full instantaneous Navier-Stokes equations
without any model for turbulent motions. DNS of IC
engine flows Is possible, but has not been performed.
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arned g—. high-efficiency motors o

. goal. Aerodynamic blad

b pected. By switching t«

hoped that a less expens

stand in for the big moi
volumes of air.

a
1€ rais—
Vhen air con-
igher, or when
load in a house

ound. The motors
zat that added to air

"\
L%

ed as much as a 25

¢y computer, plot the ' \ ver
| the tip to the root. tions proved toug

The first sheets of balsa begin covering the skeletal spar. Manual buliaing
methods produced airfoils that came quite close to the original design.

LING

P -

e .‘.'-v--_‘."n..,.._ -‘-

Partway through construction, prototype blade maker Jeff Sonne holds the first of four airfoils

he would build by hand. He cut balsa sections of the airfoil from the computer-generated plot. The handbuilt blades proved concepts; then rapid prototyping took over. Guan Su finally worked
on the preproduction prototype last summer, following many refinements to the original design.
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The Windward Il ceiling fan uses a fluorescent bulb to further increase
energy savings. A second model uses incandescent light fixtures.

Simulation of energy lost (top) to turbulence (bottom) for flat and aerody ic profiles. ges depict
tip conditions 26 inches from the center. Flat blades pitch to 12 degrees; aero-blades pitch to 6.

Infrarea thermogram of a typical Cemng fan shows heat generated by the
motor. Temperature scale at bottom reads from coolest (at left) to hottest.

Using an infrared tachometer. Parer checlk "s o ing effi-
WMFﬂmmmm“mm oo,
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Pressure

6.371E+01
4.829E+01
3.267E+01
1.745E+401

Probe value
1.413E+01

|| | [cran [pomaT

Pressure Probe value
1.02BE+01

1.476E+02
1.001E+02
5.263E+01
5.121E+00
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Pressure } . . — A - Probe value
S — 1.755E+401

7.914E401
6.371E+01
4.829E+01
3.287E+01
1.745E401
2.028E+00
1.339E+01
2.802E+01

8.032E+01
6.687E+01
5.341E401
3.996E+01
2.650E+01
1.305E+01

No title'has been

Ready

36



R EE 17 e 277 T R ER860rpm T AR )

37



I B A | e fURY 2

B qgﬂ A 17 T fEG F860rpm k> 3240rpm ™ I i BlAE [

=

0| ] CHAI DoMATI 0| ] CHAI DOMATH

Probe value i = i 2 = Probe value
8.841E+00 : : _ 3.539E+01

1.297E+01 g = : 5.908E+01
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1.367E+03
1.031E+03
6.943E+02
3.578E+02
2.140E+01

7.914E401
6.371E+01
4.829E+01
3.287E+01
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Ready
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