冷凍幫浦系統原理及維護

鄭鴻斌 副教授 國立台北科技大學 真空及超低溫技術研究室 電話:02-27712171 轉 3519,傳真:02-27711686,行動電話:0937422889 電子郵件:hpcheng@ntut.edu.tw

目 錄

- 一、前言
- 二、超低溫概念
- 三、超低溫真空抽氣原理(超低溫冷凝/吸附/捕獲)
- 四、液池式幫浦
- 五、二級 G-M 氦氣循環幫浦
- 六、基本冷凍真空幫浦抽氣系統介紹
- 七、冷凍真空幫浦系統操作程序介紹
- 八、冷凍真空幫浦性能測試

九、參考文獻

一、前言

真空技術目前廣泛使用在高科技產業中,如半導體、平面顯示 器、光電、薄膜、低溫冷凍、太陽能、材料冶金、生物科技及微奈米 技術,近年由於台灣在這些產業上的蓬勃發展,因此對真空科技及其 專業人才需求日般。目前國內投入開發真空製程設備及其關鍵性零組 件的相關研究及產業單位包含有國科會精密儀器發展中心、中山科學 研究院、工業技術研究院、東元電機、遠東機械集團(高鋒工業)、和 桐集團(和立聯合)、倍強真空、晶研科技、漢民科技、臻龍實業、富 臨科技、鈦昇科技、亞航微波及台中精機等。

在真空製程設備當中,真空幫浦是真空腔體保持真空環境的動 力。在半導體、光電及通訊產業中最常使用的幫浦包括有乾式真空幫 浦、渦輪分子幫浦及冷凍真空幫浦,尤其在物理蒸鍍系統中,由於其 高真空度及潔淨真空的製程要求,使得冷凍幫浦成為不可或缺的幫 浦,加上該幫浦具有抽氣速率快、無油氣污染並且可安裝在腔體任意 位置上的優點,使得該項產品的需求日益龐大。

二、超低温概念

Cryogenics 目前已成為超低溫的一個代名詞及同義字,National Bureau of Standards at Boulder, Colorado 定義 Cryogenics 的範圍為溫 度低於-150°C(123K)或-240F(220R),這是合理的分界,因為所謂的永 久性氣體如 helium、hydrogen、neon、nitrogen、oxygen、air 的 normal boiling points 都低於 123K,而大部分用於家用及商用的冷凍空調系 統之冷媒如 Freon (二氯二氟代甲烷) refrigerants、hydrogen sulfide(氫 硫化物)、ammonia 等的 normal boiling points 都高於 123K,如圖一所 示。

- 123K 以上可用的冷媒種類包含 Ammonia、Freon、Hydrgen Sufide
- 123K 以下可用的冷煤種類包含 Helium、Hydrogen、Noen、 Nitrogen、Oxygen、Air...

Cryogenic engineering 是在發展並增進低溫技術的一種工程,包含 process 及 equipment 等,和低溫物理不同(探討在低溫之下的物理現 象)。System 是一整體的架構,舉例而言,包含 liquefaction plants(液 化工廠)、Helium refrigerators(氦氣冷凍機)、Storage vessels(儲存槽)、 並包含所屬的控制系統。

圖一 超低温的分界¹

2.1 Cryogenic historical background¹

Year	Event			
1877	Cailletet and Pictet liquefied oxygen (Pictet 1892).			
1879	Linde founded the Linde Eismaschinen AG.			
1883	Wroblewski and Olszewski completely liquefied nitrogen and oxygen at the Cracow University Laboratory (Olszewski 1895).			
1884	Wroblewski produced a mist of liquid hydrogen.			
1892	Dewar developed a vacuum-insulated vessel for cryogenic-fluid storage (Dewar 1927).			
1895	Onnes established the Leiden Laboratory. Linde was granted a basic patent on air liquefaction in Germany.			
1898	Dewar produced liquid hydrogen in bulk at the Royal Institute of London.			
1902	Claude established l'Air Liquide and developed an air-liquefaction system using an expansion engine.			
1907	Linde installed the first air-liquefaction plant in America. Claude produced neon as a by-product of an air plant.			
1908	Onnes liquefied helium (Onnes 1908).			
1910	Linde developed the double-column air-separation system.			
1911	Onnes discovered superconductivity (Onnes 1913).			
1912	First American-made air-liquefaction plant completed.			
1916	First commercial production of argon in the United States.			
1917	First natural-gas liquefaction plant to produce helium.			
1922	First commercial production of neon in the United States.			
1926	Goddard test-fired the first cryogenically propelled rocket. Cooling by adiabatic demagnetization independently suggested by Giauque and Debye.			
1933	Magnetic cooling used to attain temperatures below 1 K.			
1934	Kapitza designed and built the first expansion engine for helium.			
1937	Evacuated-powder insulation first used on a commercial scale in cryogenic-fluid storage vessels.			
1939	First vacuum-insulated railway tank car built for transport of liquid oxygen.			
1942	The V-2 weapon system was test-fired (Dornberger 1954).			
1947	The Collins cryostat developed.			
1948	First 140 ton/day oxygen system built in America.			
1949	First 300 ton/day on-site oxygen plant for chemical industry completed.			
1952	National Bureau of Standards Cryogenic Engineering Laboratory established (Brickwedde 1960).			
1957	LOX-RP-1 propelled Atlas ICBM test-fired. Fundamental theory (BCS theory) of superconductivity presented.			
1958	High-efficiency multilayer cryogenic insulation developed (Black 1960).			
1959	Large NASA liquid-hydrogen plant at Torrance, California, completed.			
1960	Large-scale liquid-hydrogen plant completed at West Palm Beach, Florida.			
1961	Saturn launch vehicle test-fired.			
1963	60 ton/day liquid-hydrogen plant completed by Linde Co. at Sacramento, California.			

Year	Event
1964	Two liquid-methane tanker ships designed by Conch Methane Services, Ltd., entered service.
1966	Dilution refrigerator using He ³ -He ⁴ mixtures developed (Hall 1966) Neganov 1966).
1969	3250-hp dc superconducting motor constructed (Appleton 1971).
1970	Liquid oxygen plants with capacities between 60,000 m ³ /h and 70,000 m ³ /h developed.
1975	Record high superconducting transition temperature (23 K) achieved.

.

2.2 目前在超低温系統應用的領域包含有

- Rocket propulsion systems 火箭噴射推進系統:火箭使用液態氧作為氧化劑,太空梭使用液態氫及液態氧。
- (2) Studies in high-energy physics 高能物理研究:氫氣泡容器,使用液 態氫,在高能粒子研究中的大型粒子加速器上的偵測及研究上。
- (3) Electronics 電子:如 Maters 一種高靈敏度的微波增強器(sensitive microwave amplifiers),利用液態氮或液態氦作為冷卻,其中在增 強器中的原子其熱震動不受微波能量的吸收或輻射所影響,可用 在無線電天文學上的火箭偵測器上,作為遠銀河系外的太空偵 測。超導體設備的應用有 SQUIDS(Super Conducting Quantum Interference Devices)為非常敏感的電磁及電壓偵測器,其原理為 Josephson effect,另外只要有超導應用之裝置,皆會用到低溫系統。
- (4) Mechanical design 機械設計:利用超導所產生的一無電力消耗的磁 場可作為磁浮軸承的設計,超導馬達,超導 gyroscopes 陀螺儀。
- (5) Space simulation and high-vacuum technology 太空環境模擬及高真空應用:在一大型密閉空間中模擬太空環境壓力在 10⁻¹²~10⁻¹⁴ Torr(一般在 10⁻⁶~10⁻⁸ Torr),利用 cryopumping 可以達到抽器的效果,可利用液態氮將容器內的氣體作冷凝,而模擬太空環境的冷極可利用液態氮將壁面作冷卻。
- (6) Biological and medical applications 生物及藥品應用:液態氮冷卻槽可有效保存血液 blood,細胞組織 tissue,骨髓 bone marrow,動物 精液 animal semen,另外 cryogenic surgery 也有相當多的應用。
- (7) Food processing 食物處理:從1840年開始就有食物冷藏處理的應用,將裝箱的食物通過液態氮槽或氣態氮通道可保存食物的美味及芳香,約7min處理時間,傳統方法要 30~48min,在運送過程

7

中的卡車也利用液態氮作為冷凍的方式。

- (8) Manufacturing processes 加工過程:氧在製作鋼材時佔有重要的地位,使用超低溫系統製作 ammonia,製作高壓容器時可將預鑄好的剛材在一液態氮溫度的輸送帶中,通入高壓的氮氣,使容器伸張 15%,再使溫度回覆至室溫,如此可加強材料的 yield strength 400~500%。
- (9) Recycling materials 物質回收:卡車的輪胎在液態氮的低溫下固化 後形成易碎狀態,利用敲擊使輪胎脆化成許多小塊而脫離輪胎鋼 圈,這是目前最有效的回收處理法。

三、超低溫真空抽氣原理(超低溫冷凝/吸附/捕獲)

冷凍真空幫浦是利用超低溫的環境來吸附真空腔體內的氣體以 達到抽氣的效果,其抽氣方式分為超低溫冷凝(Cryocondensation)、超 低溫吸附(Cryosorption)及超低溫捕獲(cryotrapping)等三種方式。超低 溫冷凝是利用極低溫的表面將入射的氣體分子冷凝下來,並利用極小 的蒸氣壓力以保持高真空的特性。超低溫吸附是對於一些不易被低溫 冷凝下來的氣體(Non-Condensible Gas),如:氦、氖、氫等,利用多 孔性物質使這些氣體進入後降低其動能,最後因為動能的喪失而停留 在多孔性物質的內部,進而達到抽氣效果。超低溫捕獲是利用較易低 溫冷凝的氣體(如氫氣)以吸附其他不易冷凝的氣體(如氫氣),冷凝之 氫分子具多孔性,使得氫分子容易被吸附而減低其蒸氣壓。冷凍真空 幫浦的抽氣機制中以低溫冷凝及低溫吸附為主要的抽氣方式。以下針 對這三種超低溫真空抽氣方式進行說明。

3.1 超低溫冷凝(Cryocondensation)

氯體分子在不同溫度下皆有一定的飽和蒸氣壓。飽和蒸汽壓的意 義為氣體分子附著於表面的通量要等於從表面釋放出來的氣體分子 通量。對於超低溫冷凝而言,到達表面的氣體分子被冷凝成固態或液 態,並在表面停留一段時間後再變成氣態,氣體的蒸氣壓及其在表面 停留的時間與溫度有關,溫度越低則蒸汽壓越小且在表面停留的時間 越長,如表一所舉例說明的。另外常用氣體的溫度與蒸汽壓的關係如 圖二所示。因此若能將表面的溫度降到極低溫時,超低溫冷凝就變得 是一種非常好的抽氣機制,因為氣體的蒸汽壓非常低,而分子停留在 表面的時間非常長,以致於可以將真空腔體內的氣體抽除並保留在超 低溫的表面上。舉例來說,液態氮對於水氣而言是一種非常好的冷凝

9

劑,因為在液態氮溫度為 77K 時,水氣的蒸氣壓力只有 10⁻¹⁹Pa。簡 單來說,超低溫冷凝是利用極低溫的表面將入射的氣體分子冷凝下 來,並利用極小的蒸氣壓力以保持真空腔體達到高真空的特性。低溫 冷凝的抽氣速率與冷凝係數成正比,冷凝係數定義為冷凝氣體分子數 目與入射氣體分子數目的比值,與入射氣體溫度及冷凝面溫度有關, 當入射氣體溫度與冷凝面溫度越低時,其冷凝係數也越大,對於大部 分的氣體而言,冷凝係數在 0.5~1.0 之間。經由超低溫冷凝下的氣體 分子會在表面形成一層固態氣體,其厚度受限於其周圍不同溫度表面 的熱梯度及空間,而固態氣體密度、熱傳導係數與形成固態氣體的溫 度有關。通常當形成的溫度越低時,其密度及熱傳導係數越低。

5 JL	去吸附能量 (Desorption Energy) (10 ⁶ J/(kg-mole))	停留時間 (Residence Time at)		
飛体		77K (s)	22°C (s)	450°C (s)
H ₂ O/ H ₂ O	40.6	10 ¹⁵	10 ⁻⁵	10 ⁻⁹
H ₂ O/metal	96		10 ⁵	10-5
H ₂ /Mo	160		10 ¹⁷	1

表一 氣體分子在表面的去吸附(desorption)能量及停留時間²

--:代表非常久

圖二 不同氣體蒸氣壓與溫度的關係曲線³

3.2 超低温吸附(Cryosorbtion)

對於一些不易被低溫冷凝下來的氣體(Non-Condensible Gas), 如:H₂、He、Ne等,利用多孔性物質使這些氣體進入後降低其動能, 最後這些氣體因為動能的喪失而停留在多孔性物質的內部,進而達到 真空抽氣的效果。圖三為氣體分子被多孔性材料吸附的示意圖,圖中 的沸石(zeolite)或活性碳(activated charcoal)具有近乎圓形的多孔性結 構,並且有微小通道將這些結構多孔性結構連結起來,這些微小通道 的直徑約略等於氣體分子的直徑,以Linde 5A及13A為例,其平均 的多孔性材料直徑在5~10Å之間。圖四為Xe、Kr及Ar氣體在77.8K 時於多孔性的銀物質中其被吸收的氣體原子數目與壓力之關係圖,由 圖可以知道在壓力非常低時,其被吸收的原子數目與壓力呈線性的關 係,且斜率為1,代表在壓力極低時,因為氣體原子的數目極少,已 無法再吸附氣體原子。但是當壓力逐漸升高時,多孔性物質所能吸附 的原子數目也逐漸增多,但是約在吸收2×10¹⁹個原子後達到飽和。一 般多孔性物質單位表面積所能吸收的原子數目約為 10¹⁵atms/cm²。圖 五為活性碳多孔性物質進行 H₂ 的吸附過程中,其溫度與吸附率的關 係圖。由圖可知,在一特定的壓力之下,當溫度越低時,活性碳所能 吸附的氣體數目越多,在冷凍真空幫浦內部是以活性碳來作為吸附 H₂、He、Ne 等氣體的多孔性物質。

圖三 氣體分子被多孔性材料吸附示意圖 4

圖四 Xe、Kr 及 Ar 氣體在 77.8K 時於多孔性的銀物質中其被吸收的 氣體原子數目與壓力之關係圖²

圖五 活性碳多孔性物質進行 H₂的吸附過程中,其溫度與吸附率的關 係圖²

3.3 超低溫捕獲(Cryotrapping)

利用較易低溫冷凝的氣體(如 Ar)以吸附其他不易冷凝的氣體(如 H₂),冷凝之 Ar 分子具多孔性,使得 H₂ 分子容易被吸附而減低其蒸 氣壓。其他例如利用冷凝氫氣來捕獲 He,或利用 CO 來捕獲 H₂。圖 六顯示了利用冷凝 Ar 來捕獲 H₂的關係圖。此實驗同時使用擴散幫浦 及超低溫冷凝面進行 H₂的抽除,當導入 Ar 量為 0 時,由導入的 H₂ 氣流通量及擴散幫浦的抽氣速率可以得到一穩態的系統壓力,當通入 Ar 時,因為 Ar 的冷凝而捕獲 H₂,而造成 H₂分壓的下降即可量測冷 凝 Ar 對於 H₂的捕獲率。由圖可知在 5K 時,H₂/Ar 捕獲率遠大於 15K 時的捕獲率,當溫度高於 23K 時,H₂/Ar 的捕獲率已為 0。

圖六 利用冷凝 Ar 來捕獲 He 的關係圖 2

四、液池式幫浦

4.1 吸附幫浦(adsorption pump)

此類幫浦以物理吸附的方式將氣體吸附在幫浦內部具有大表面 積的物質表面上,例如多孔性物質,圖七是吸附幫浦的內部結構示意 圖,其中沸石(zeolite,一種砂化鋁鹼物質 alkali alumino-silicate)有很 大的表面積,每一克的表面積 10^3m^2 ,吸附等量於 133 mbar.Ltr 的氣 體。當沸石被冷卻至液態氮的溫度時,整個氣體吸附的效能會再大幅 提昇,吸附的氣體最終會充滿在幫浦內部的空間。此類幫浦通常被使 用於將真空腔體的壓力下降至離子幫浦或冷凍幫浦可以啟動的壓 力,並使腔體內的碳氫化合物氣體完全被抽除。參考圖八,此類幫浦 使用於真空系統通常安裝兩套以交替使用,一次只使用一套,當第一 套飽和時,將第一套幫浦與真空系統隔絕,並打開第二套幫浦與系統 的連結閥,讓第二套幫浦對真空系統進行抽氣,同時對第一套幫浦進 行再生的程序,移除第一套幫浦內部的液態氮,並對其加熱直到移除 內部所有的氣體為止。此類幫浦對氫、氦、氖氣的抽氣性能非常差, 這是由於這些氣體不同的物理吸附特性的關係,所幸這類氣體非常稀 少,在大氣環境中只佔有百萬分之一的比例,因此並不會造成抽氣過 程上的困擾。在一些應用上,通常先使用膜片幫浦或乾式真空幫浦將 真空腔體內的壓力下降至 10mbar 以下之後在打開此類幫浦進行抽 魚,使真空腔體壓力再下降。

15

圖七 吸附幫浦的內部結構式意圖³

圖八 交替工作的吸附式幫浦抽氣系統³

4.2 液池冷凍幫浦(liquid poop cryopump)

此種幫浦的內部冷凝抽氣面溫度保持在液態氦的溫度,並利用外 部液態氮冷卻的外罩及檔板作為熱屏障,如圖九所示。此類幫浦需要 使用大量的液態氦,但是設計良好的冷凝吸附面及擋板可以讓此類幫 浦達到大的抽氣速率,例如107 Ltr/s。

圖九 液池冷凍幫浦³

五、二級 G-M 氦氣循環幫浦

5.1 抽氣原理

以氦氣作為冷媒的閉迴路二級 Gifford-McMahon (G-M)冷凍機型 式之冷凍真空幫浦,其冷凍真空幫浦內部示意圖如圖十所示。其抽氣 機制由兩級具不同溫度的超低溫冷凝面所構成,第一級冷凝面的溫度 約為 50~80 K,第二級冷凝面的溫度約為 10~20K。為防止外界熱能 經由熱輻射進入第二級,因此絕熱輻射筒與二級 G-M 冷凍系統之 50~80K 制冷端及第一級冷凝面相結合,且藉由熱傳導將絕熱輻射筒 及第一級冷凝面的溫度降至 50~80 K。絕熱輻射筒與第一級冷凝面要 將第二級冷凝面完全罩住,且不可透光。第二級冷凝面則是由 4~6 片 倒杯型式冷凝面之組合體所構成,並與二級 G-M 冷凍系統之 10~20 K 制冷面結合在一起,經由熱傳導將第二級冷凝面的溫度降至 10~20 K。在第二級冷凝面的背後並塗佈有活性碳,可吸附不易被低溫冷凝 的氣體。

冷凍真空幫浦內部對各主要氣體的抽氣現象如圖十一所示,其中 水及二氧化碳吸附在第一級冷凝面,氮氣、氧氣及氫氣等被吸附在第 二級冷凝面,至於氦氣、氖氣及氫氣則被活性碳吸附在第二級冷凝面 的背面。整個冷凍系統使用氣態氦作為冷媒。

- 1. 冷凝面
- 2. 冷凝面
- 3. G-M 冷凍機 50~80K 制冷端
- 4. G-M 冷凍機 10~20K 制冷端
- 5. 第一級冷凝面
- 6. 第二級冷凝面
- 7. 絕熱輻射筒
- 8. 活性碳
- 圖十 冷凍真空幫浦示意圖

圖十一 二級 G-M 冷凍機內的低溫抽氣配置

5.2 內部結構

冷凍真空幫浦的實體照片如圖十二所示,分成兩大部分,一是真 空幫浦本體,一是氦氣壓縮循環系統。真空幫浦本體共有兩級冷頭, 第一級冷頭約可達 50~80K,第二級冷頭約可達 10~20K,幫浦本體包 含有 50~80K 冷凝面、50~80K 絕熱輻射筒、10~20K 冷凝面、活性碳、 第一級冷頭、氫氣氣壓表、馬達、安全洩壓閥、不鏽鋼外殼及第二級 冷頭。氦氣壓縮循環系統採用閉迴路二級式 Gifford-McMahon(G-M) 冷凍機,主要部分有控制模組、油分離器、熱交換器、緩衝器、吸收 器、壓縮機、使用時間紀錄表、氦氣壓力表、氦氣管路等,從壓縮機 進入 G-M 循環高壓端的氦氣,其壓力約為 13mbar,溫度為室溫。

(a)真空幫浦本體	(b)氦	氣壓縮機循環系統
1:50~80K 冷凝面	8: 安全洩壓閥	15: 熱交換器
2:50~80K 絕熱輻射筒	9: 不銹鋼外殼	16: 緩衝器
3:10~20K 冷凝面	10: 第二級冷頭	17: 氦氣管路
4: 活性碳	11: 控制模組	18: 吸收器
5: 第一級冷頭	12: 使用時間記錄表	19: 壓縮機
6: 氫氣蒸氣壓表	13: 氦氣壓力表	
7: 馬達	14: 油分離器	

圖十二 冷凍真空幫浦實體圖(參考日本 ULVAC 目錄)

5.3 G-M 冷凍機原理

G-M(Gifford-McMahon,由McMahon及Gifford在1960年所發明)的冷凍循環圖如圖十三所示,其相對應的單位質量工作流體的溫-熵圖(temperature-entropy)如圖十四所示,這個系統包含有壓縮機 (compressor)、密閉圓筒(a cylinder closed at both ends)、在密閉圓筒內 部的位移器(displacer),及再生器(regenerator)。其中位移器並不對外 界作工,其目的為將密閉圓筒內的工作流體從一個區域傳送至另外一 個區域。整個G-M冷凍機的操作循環參考圖十三及圖十四如下所示: 流程1-2:當位移器(displacer)在汽缸(cylinder)的底部時,打開進氣閥 門(intake valve), upper expansion space 區域的壓力上升(從 彽壓 P1 to 高壓 P2), lower expansion space 的體積理論上

為0。(因為位移器這時還在汽缸的最底部)

- 流程 2-3:進氣閥門還是打開的,排氣閥門關閉(exhaust valve closed), 位移器向上移動,從汽缸的底部移至頂部 (to the top of cylinder),造成在 upper expansion space 的氣體流經過再生 器(regenerator)而至 lower expansion space,氣體流經再生器 時會被冷卻(cooled),因此體積會變小,而帶動氣體從進氣 閥門再流入再生器,而保持等壓過程。
- 流程 3-4: 位移器在汽缸的頂端位置,進氣閥門關閉,排氣閥門打開, 在 lower expansion space 的氣體膨脹至原有的壓力 P1 而造 成溫度的降低。
- 流程 4-5: 位移器向下移動, 強迫在 lower expansion space 中的低溫氣 體流出汽缸, 而這些低溫的氣體會經過一熱交換器而從低 溫的外界吸熱。

流程 5-1: 流經熱交換器的氣體會經過再生器, 而使得氣體回昇至接

22

近常温。

圖十四 相對應的單位質量工作流體的溫-熵圖(temperature-entropy)¹

整個流程所需要的功(work)為

$$-\frac{W}{m} = [T_1(S_1 - S_2) - (h_1 - h_2)]/\eta_{c.o}$$
(1)

從低溫區吸走的熱量為

$$\frac{Q_a}{m} = (\frac{m_e}{m})(h_5 - h_{4'}) = \eta_{ad}(\frac{m_e}{m})(h_5 - h_4)$$
(2)

 η_{ad} :絕熱膨脹的效率

 m_e : 在流程 3-4 結束時留在 lower expansion space 的氣體質量

m:整個循環過程被壓縮的氣體總質量

因為在膨脹過程中其密閉圓筒的膨脹體積為定值,因此

$$\therefore \frac{m_e}{m} = \frac{\rho_{4'}}{\rho_3} \tag{3}$$

下列因素會影響 G-M 冷凍機的效率

量測小型 G-M 紅外線冷卻器得知,實際的冷凍機的效率為理想冷凍機的 59%。

再生器的設計非常重要,要注意以下幾點:

- (1) 熱交換效率要達 98%。
- (2)使用衝壓(punched)方式製作出銅 (copper) or 黃銅(brass) 網作為再生器內部的材料,如圖十五所示。
- (3) 為減少沿著再生器軸向的熱傳導,以不銹鋼線所製成的線 圈安裝在沖壓銅網之間,分隔沖壓銅網如圖十五所示。
- (4) 在非常低温時,可使用鉛(Lead, Pd)替代銅(copper),因

為鉛在低溫時由於其有較低的 Debye 溫度,因此其比熱 (specific heat)較高。

圖十五 再生器內部結構示意圖1

另外一個 G-M 系統很吸引人的特性為可設計成多級式,如圖十 六為三級 G-M 冷凍機設計,其特點為:

- (1)可達到3個溫度~145°R,~60°R,~25°R(15K)。
- (2)整個系統只比單級複雜一點。
- (3)使用氦氣。
- (4)所有的閥門在室溫下運作。
- (5)3 個位移器可只靠著一組驅動裝置來驅動。
- (6)要達到15K時,使用3級所需要的功,要小於使用單級所需要的功。

圖十六 三級 G-M 冷凍機系統式意圖¹

5.4 真空系統架構

圖十七為簡單的系統設備示意圖,由前級幫浦(乾式真空幫浦或 油式幫浦)、冷凍真空幫浦含氦氣壓縮機、真空腔體、冰水機、氣體 流量顯示器及微調閥等組成。氣體流量顯示器是由四個不同規格的針 閥所組成,以調整氣體流量的大小。壓力感測元件為派藍尼真空計及 離子真空計,冷凍真空幫浦系統啟動之前使用氦氣測漏儀對系統進行 洩漏測試,並且在系統到達終極壓力後使用殘氣分析儀進行測試腔體 殘留氣體成份的分析。壓縮機內部可以將循環的氦氣過濾及再冷卻, 壓縮機內部的過濾器在使用 12,000~15,000 小時後要再進行維護、清 洗或更換。

冷凍幫浦在使用一陣子之後,當冷凝面充滿了冷凝下來的氣體時 要進行再生,至於要多少時間進行再生則需要視被抽除的氣體總類及 被抽除的量而定。再生程序是使幫浦及壓縮機關機,幫浦內部的溫度 會逐漸上升,再輔助通入乾氮作為掃氣(purge)氣體,之後再將幫浦內 部的氣體抽除至幫浦的啟動壓力,再開啟幫浦的電源重新啟動幫浦。 當幫浦進行再生程序時要非常小心,因為當幫浦內部的溫度上升時, 原先固化下來的氣體會迅速變為氣體,造成幫浦內部壓力的急劇上升 而從安全洩壓閥排出。若抽除的氣體為具爆炸性及反應性的氣體,就 可能會對外界造成污染。冷凍幫浦的冷卻時間(cool-down)約為一小 時,幫浦的抽氣速率最大約可達到 10,000Ltr/s,部分產品的位移器 (displacer)移動速度可以被調整以控制幫浦的冷凍能力,因此有待機 狀態及全速抽氣狀態,以達到減少活塞的磨耗及減少氦氣的消耗。

冷凍幫浦主要應用於要求無碳氫化合物污染(hydrocarbon free)的 真空系統中,例如表面科學(surface science)、半導體製程 (semiconductor production)、平面顯示器製程(flat panel displayer

27

production)、太空模擬腔體(space simulation chamber)等,目前還有一個壓縮機搭配數個冷凍幫浦的系統。

V ₁ :流量開闢	PiG:派藍尼真空計
V2:流量開關	IG:離子真空計
V 3:N2 進入閥	RV:前級閥
V4:N2 出口閥	RGA:殘氣分析儀
V5:閥門	W:視窗
G: 氣瓶	NV:針閥
FM:流量計	

圖十七 冷凍真空幫浦系統設備示意圖

六、基本冷凍真空幫浦抽氣系統介紹

冷凍真空幫浦抽氣系統主要是由真空腔體、冷凍真空幫浦、控制 箱、氦氣壓縮機、冰水機、氣體供應系統、氣體流量顯示器及前級幫 浦所組成,其實體照片如圖十八所示。圖十九為真空腔體周圍儀器設 備照片。真空腔體周圍有六個接頭,分別將派藍尼真空計、離子真空 計、殘氣分析儀、前級閥、氣體進入口及真空電流引入裝置於腔體周 圍。其派藍尼真空計及離子真空計所量測的壓力範圍分別為0.4~2700 Pa及1.3×10⁻⁵~6.7×10⁻¹ Pa,另外將四極式質譜管置於腔體周圍,經 由訊號接收端接上殘留氣體分析儀,以分析真空腔體到達終極壓力後 的殘留氣體成份。腔體所接出的前級閥其功能為當冷凍真空幫浦系統 由前級幫浦進行真空腔體抽氣時所開啟的閥門。氣體進入口端為連接 真空腔體和質流控制器之間的管路,氦氣及氫氣可由此導入至腔體內 部。真空腔體上方裝設一視窗,可觀測腔體內部情況。 氣體供應系統

圖十八 冷凍真空幫浦系統照片

圖十九 真空腔體周圍儀器設備

圖二十為氣體流量控制器照片。質流控制器是由四個流量計(範圍 分別為 0~25 SCCM、0~500 SCCM、0~10 SLM 及 0~50 SLM)、四個 微調針閥、氣體進入閥及電源供應器所組成。進行實驗時依據所需通 入的氣流通量,選擇適合的流量計。對於氣體通入的控制是採用微調 針閥,其微調針閥可精準的調整所需要的氣流量。圖二十一顯示各個 閥門與氣瓶、腔體之間的關係照片圖。

[1] 流量量測器 (範圍 0~25 SCCM)

- [2] 流量量測器 (範圍 0~500 SCCM)
- [3] 流量量測器(範圍 0~10 SLM)
- [4] 流量量測器 (範圍 0~50 SLM)
- [5] 微調閥
- [6] 氣體進入閥
- [7] 電源供應器

圖二十 質流控制器照片圖

閥[1]: 氣瓶與質流控制器間 閥[2]: 質流控制器與閥[3]間 閥[3]: 閥[2]與腔體間 閥[4][5][6][7]: 微調閥

圖二十一 質流控制器閥門位置

七、冷凍真空幫浦系統操作程序介紹

7.1 冷凍真空幫浦開機程序

- 1. 關閉前級閥、洩壓閥、微調針閥等所有閥門。
- 2. 開啟冰水機,並由乾式真空幫浦先對系統進行粗抽並打開前級 閥,壓力降至40Pa左右,再對系統做壓力上升測試,假若壓力回 升值過大(約 60Pa)則必須再由乾式真空幫浦對腔體進行抽氣至 40Pa左右,壓力若保持在適當範圍內(40~60 Pa)就可以關閉乾式真 空幫浦。
- 開啟氦氣壓縮機及冷凍真空幫浦,由冷凍真空幫浦對測試腔體進 行抽氣一直到終極壓力。
- 4. 開機流程如圖二十二所示。
- 7.2 冷凍真空幫浦關機程序
- 1. 離子真空計關閉。
- 2. 氣瓶開關關閉。
- 氯瓶及質流控制器之間的閥關閉,接著所有微調閥關閉,最後再 關閉測試腔體和質流控制器之間的閥。
- 4. 冷凍真空幫浦、冰水機及總電源關閉。
- 5. 關機流程如圖二十三所示。
- 7.3 冷凍真空幫浦系統測漏檢驗
- 將氦氣測漏儀接管子後再接至真空腔體。一開始由前級幫浦對於 真空腔體進行抽氣,壓力降至40Pa,關閉連接至前級幫浦的閥門, 開啟氦氣測漏儀的閥門,由氦氣測漏儀內的幫浦繼續對於真空腔 體進行抽氣。
- 2. 待氦氣測漏儀操作面板顯示壓力穩定後,使用氦氣進行探漏。對

35

於腔體周圍的接口端、冷凍真空幫浦與腔體接合處、腔體與質流 控制器間,以微量的氦氣進行探漏,假若系統有洩漏,則操作面 板的壓力會上升。

7.4 質流控制器測漏檢驗

質流控制器閥門位置圖二十一所示。

- 腔體壓力維持終極壓力時,將閥[3]打開,冷凍真空幫浦對此管路 進行抽氣。
- 2. 腔體壓力維持終極壓力時,將閥[2]打開,使冷凍真空幫浦對質流 控制器至真空腔體間的管路進行測漏。
- 2. 腔體壓力維持終極壓力時,分別將質流控制器上的微調閥
 [4][5][6][7]打開,進行測漏。
- 以上步驟若經過一段時間後,壓力仍維持終極壓力,則表示管路 的測漏情況良好。
- 7.5 氣體通入測試腔體之操作程序
- 通入氣體實驗之前,避免因壓力迅速降低時導致離子真空計毀壞,因此先行將離子真空計關閉,並且已對質流控制器進行測漏 實驗確保質流控制器不會產生洩漏。
- 2. 氣瓶開啟,通入測試氣體(氮氣或氫氣),微調針閥並由氣體流量顯 示器之讀值控制進入測試腔體內的氣流通量,實驗採用定壓量測 法,待測試腔體壓力達穩定值後記錄腔體壓力及通入的氣流通量。

7.6 冷凍真空幫浦再生程序

- 1. 設備停止抽真空動作。
- 2. 將 N₂ Gas IN 打開, 並且將 N₂ 氣體通入。

36

3. 等待大氣指示燈亮起後,將 N2 Gas Out 開啟,完成了再生程序。

- 4. 再生時間為 1~1.5 小時。
- 5. 冷凍真空幫浦再生流程如圖二十四所示。

圖二十二 開機程序操作流程

圖二十三 關機程序操作流程

圖二十四 冷凍真空幫浦再生流程圖

八、冷凍真空幫浦性能測試

冷凍真空幫浦依據 AVS 所建議的測試程序進行抽氣性能測試, 圖二十五是系統開啟後測試腔體壓力與操作時間的關係曲線。一開始 的腔體壓力由派藍尼真空計(壓力範圍 0.4~2700 Pa)量測,壓力為 96 Pa。經過 37 分鐘後壓力降到 0.4 Pa,之後的壓力由離子真空計(壓力 1.3E-05~6.7E-01 Pa)測量直到系統達到終極壓力,打開離子真空計時 所測得的壓力為 4.6E-01 Pa。對於此次實驗,在系統運轉 190 分鐘且 壓力到達 7.4E-05 Pa 時進行第一次的除氣,時間約二分鐘,由於離子 真空計內部吸附於柵極表面的氣體會因為電子撞擊而放出,氣體放出 後會使得真空計區域壓力異於真空系統實際的壓力,因此需對於離子 真空計的柵極進行加熱除氣,使量測出的真空值較為精確。在進行第 一次的除氣時,其腔體壓力上升速度較快,且壓力上升值較高,而之 後的除氣過程其壓力上升幅度則較為緩和,整個實驗過程,對於離子 真空計進行四次除氣。系統運轉約 300 分鐘壓力漸漸進入穩定狀態, 在 395 分鐘記錄冷凍真空幫浦的終極壓力,約為 5.2E-05 Pa。

圖二十五 系統操作時間與進口壓力關係圖

冷凍真空幫浦系統在達到終極壓力後所做的測試包括(1)冷凍真 空幫浦啟動後時間與進口壓力的關係。(2)氮氣及氫氣抽氣速率的實 驗。(3)冷凍真空幫浦關閉後第一級冷凝面回溫情況。(4)使用殘留氣 體分析儀分析測試腔體殘留氣體成份。圖二十六為利用冷凍真空幫浦 本身的溫度顯示器所測得到的冷凍真空幫浦開啟時間與溫度的關 係,控制面板上的溫度顯示器以電壓 mV 為單位代表溫度值,其絕對 值愈大代表其溫度越低,圖二十七及圖二十八為依據 AVS 所建議的 測試程序,而測得氮氣的氣流通量、抽氣速率與進口壓力的曲線。圖 二十九及圖三十為氫氣的氣流通量、抽氣速率與進口壓力的曲線。

圖二十六 冷凍真空幫浦開啟時間與溫度值關係圖

圖二十七 氮氣通入量與進口壓力關係圖

圖二十八 氮氟抽氟速率與進口壓力關係圖

圖二十九 氫氣通入量與進口壓力關係圖

圖三十 氫氣抽氣速率與進口壓力關係圖

圖三十一顯示為氦氣的抽氣速率及氣流通量與測試腔體壓力的 關係曲線。此實驗是以通入的氣流通量為基準,所通入氦氣的時間分 別維持在3分鐘及60分鐘,來測量通入氣流通量在不同時間之下, 是否對於系統抽氣速率造成影響。根據測量結果所通入的氦氣氣流通 量,當通入的時間維持在3分鐘時抽氣速率介於1,270~1,840 liter/sec,通入時間為60分鐘時抽氣速率分別為1,310、1,530及1,750 liter/sec。因此發現將通入的氣流通量時間延長,對於冷凍真空幫浦系 統的抽氣速率並不會產生很大的變化。

圖三十一 氮氣通入3分鐘及60分鐘與進口壓力與氣流通量 及抽氣速率關係圖

圖三十二為冷凍真空幫浦關機後幫浦回溫時間與第一級冷凝面 溫度的關係曲線,溫度顯示器的電壓值由-7.17 mV 開始回升,由記錄 數值顯示約在 146 分鐘後可由派藍尼真空計測得壓力約 0.5 Pa,此時 溫度顯示器電壓值為-3.54 mV (約為-99.5℃)。圖三十三為回溫時間和 壓力關係曲線,在 201 分鐘時壓力為 1.1E02 Pa,此時壓力回升的速 度變慢,且漸漸趨近定值,最後的記錄時間為 280 分鐘,此時壓力上 升到 1.5E02 Pa。時間經過 48 小時後,系統的壓力大約維持在 1.9E02 Pa,腔體內的溫度回復至為常溫。

圖三十二 回溫時間與溫度值關係圖

殘氣分析儀主要可分析出測試腔體中所含的氣體種類及其所佔 的比例,即各殘氣氣體分壓大小,其次可對於真空系統進行探漏判定 及測定。當測試腔體壓力低於 1.0E-02 Pa 時才可對於腔體進行殘餘氣 體分析。圖三十四為系統的前級幫浦採用油式機械幫浦,待壓力到達 一定值時再採用冷凍真空幫浦對於測試腔體進行抽氣一直到終極壓 力。系統到達終極壓力後,使用殘氣分析儀所量得的終極壓力為 1.3E-04 Pa。使用殘留氣體分析後結果以水氣及氫氣的含量較高,分 壓分別為 1.35E-07 Pa 及 4.96E-08 Pa。對於冷凍真空幫浦系統內部的 水氣清除,可進行烘烤腔體程序,使內部部份水氣清除則水氣分壓即 可降低。氫氣由於較輕且分子熱速度較高,因此氫氣不容易去除。

圖三十四 終極壓力後測試腔體內剩餘氣體

九、參考文獻

- 1. Randall F. Barron, Cryogenic systems, Oxford, 1985.
- John F. O'Hanlon, A User's Guide to Vacuum Technology, Willey, 2003.
- 3. A. Chambers, R. K. Fitch, B. S. Halliday, Basic Vacuum Technology, IOP, 1998.
- 4. Harland G. Tompkins, Vacuum Technology: A Beginning, AVS, 2002.