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3-7 FLUIDS IN RIGID-BODY MOTION

We are almost ready to begin studying fluids in motion (starting in Chapter 4), but
first there is one category of fluid motion that can be studied using fluid statics ideas:
rigid-body motion. As the name implies, this is motion in which the entire fluid
moves as if it were a rigid body—individual fluid particles, although they may be in
motion, are not deforming. This means that, as in the case of a static fluid, there are
no shear stresses.

What kind of fluid flow has rigid-body motion? You recall from kinematics that
rigid-body motion can be broken down into pure translation and pure rotation. For
translation the simplest motion is constant velocity, which can always be converted
to a fluid statics problem by a shift of coordinates. The other simple translational
motion we can have is constant acceleration, which we will consider here (Example
3.9). In addition, we will consider motion consisting of pure constant rotation
(Example 3.10). As in the case of the static fluid, we may apply Newton’s second law
of motion to determine the pressure field that results from a specified rigid-body
motion.

In Section 3-1 we derived an expression for the forces due to pressure and grav-
ity acting on a fluid particle of volume dV---. We obtained

d~F � ð�rp � r~gÞdV---

or

d~F
dV---

� �rp � r~g ð3:2Þ

Newton’s second law was written

d~F �~a dm �~ar dV--- or
d~F
V---

� r~a

Substituting from Eq. 3.2, we obtain

�rp � r~g � r~a ð3:17Þ

If the acceleration a~ is constant, we can combine it with g~ and obtain an effective
‘‘acceleration of gravity,’’ ~gef f �~g �~a, so that Eq. 3.17 has the same form as our
basic equation for pressure distribution in a static fluid, Eq. 3.3:

�rp � r~gef f � 0 ½Compare to �rp � r~g � 0 ð3:3Þ�

This means that we can use the results of previous sections of this chapter as long as
we use~gef f in place of g~. For example, for a liquid undergoing constant acceleration
the pressure increases with depth in the direction of ~gef f , and the rate of increase of
pressure will be given by rgeff, where geff is the magnitude of~gef f . Lines of constant
pressure will be perpendicular to the direction of ~gef f . The physical significance of
each term in Eq. 3.17 is as follows:

�rp � r~g � r~a( net pressure force
per unit volume

at a point

)
�

( body force per
unit volume
at a point

)
�

(mass per
unit

volume

)
�

( acceleration
of fluid
particle

)

3-7 FLUIDS IN RIGID-BODY MOTION W-1



80812 c03a.3d GGS 6/12/08 17:10

This vector equation consists of three component equations that must be satisfied in-
dividually. In rectangular coordinates the component equations are

�
@p
@x

� rgx � rax x direction

�
@p
@y

� rgy � ray y direction

�
@p
@z

� rgz �raz z direction

9>>>>>>>>=
>>>>>>>>;

ð3:18Þ

Component equations for other coordinate systems can be written using the appropri-
ate expression for rp. In cylindrical coordinates the vector operator, r, is given by

r� êr
@

@r
� êy

1
r
@

@y
� k̂

@

@z
ð3:19Þ

where êr and êy are unit vectors in the r and y directions, respectively. Thus

rp � êr
@p
@r

� êy
1
r
@p
@y

� k̂
@p
@z

ð3:20Þ

Example 3.9 Liquid in Rigid-Body Motion with Linear Acceleration

As a result of a promotion, you are transferred from your present location. You must transport a fish tank in the
back of your minivan. The tank is 12 in. � 24 in. � 12 in. How much water can you leave in the tank and still be
reasonably sure that it will not spill over during the trip?

GIVEN: Fish tank 12 in. � 24 in. � 12 in. partially filled with water to be transported in an automobile.

FIND: Allowable depth of water for reasonable assurance that it will not spill during the trip.

SOLUTION:
The first step in the solution is to formulate the problem by translating the general problem into a more specific one.

We recognize that there will be motion of the water surface as a result of the car’s traveling over bumps in the road,
going around corners, etc. However, we shall assume that the main effect on the water surface is due to linear accelerations
(and decelerations) of the car; we shall neglect sloshing.

Thus we have reduced the problem to one of determining the effect of a linear acceleration on the free surface. We have
not yet decided on the orientation of the tank relative to the direction of motion. Choosing the x coordinate in the direction of
motion, should we align the tank with the long side parallel, or perpendicular, to the direction of motion?

If there will be no relative motion in the water, we must assume we are dealing with a constant acceleration, ax. What is
the shape of the free surface under these conditions?

Let us restate the problem to answer the original questions by idealizing the physical situation to obtain an approximate
solution.

GIVEN: Tank partially filled with water (to depth d) subject to constant linear acceleration, ax. Tank height is 12 in.; length
parallel to direction of motion is b. Width perpendicular to direction of motion is c.

FIND: (a) Shape of free surface under constant ax.
(b) Allowable water depth, d, to avoid spilling as a function of ax and tank orientation.
(c) Optimum tank orientation and recommended water depth.

SOLUTION:

Governing equation: �rp � r~g �r~a

� î
@p
@x

� ĵ
@p
@y

� k̂
@p
@z

� �
� rð îgx � ĵgy � k̂gzÞ�rð îax � ĵay � k̂azÞ

g

y

b
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Since p is not a function of z, @p/@z � 0. Also, gx � 0, gy � �g, gz � 0, and ay � az � 0.

;� î
@p
@x

� ĵ
@p
@y

� ĵrg � îrax

The component equations are:

@p
@x

� �rax

@p
@y

� �rg

Recall that a partial
derivative means that
all other independent
variables are held constant
in the differentiation:

8>>>><
>>>>:

The problem now is to find an expression for p � p(x, y). This would enable us to find the equation of the free surface.
But perhaps we do not have to do that.

Since the pressure is p � p(x, y), the difference in pressure between two points (x, y) and (x � dx, y � dy) is

dp �
@p
@x

dx �
@p
@y

dy

Since the free surface is a line of constant pressure, p � constant along the free surface, so dp � 0 and

0 �
@p
@x

dx �
@p
@y

dy � �rax dx �rg dy

Therefore,

dy
dx

�
free surface

� �
ax

g
�

fThe free surface is a plane:g

Note that we could have derived this result more directly by converting Eq. 3.17 into an equivalent ‘‘acceleration of gravity’’
problem,

�rp � r~geff � 0

where ~gef f �~g � îax � �îax � ĵg. Lines of constant pressure (including the free surface) will then be perpendicular to the
direction of~gef f , so that the slope of these lines will be �1/ðg/axÞ� �ax/g.
In the diagram,

d � original depth

e � height above original depth

b � tank length parallel to direction of motion

e �
b
2

tan y�
b
2

�
dy
dx

� �
free surface

�
b
2

ax

g
Only valid when the free surface intersects
the front wall at or above the floor

� �

Since we want e to be smallest for a given ax, the tank should be aligned so that b is as small as possible. We should align the
tank with the long side perpendicular to the direction of motion. That is, we should choose b � 12 in.

�
b

With b � 12 in.,

e � 6
ax

g
in:

The maximum allowable value of e � 12 � d in. Thus

12 � d � 6
ax

g
and dmax � 12 � 6

ax

g

If the maximum ax is assumed to be 2/3 g, then allowable d equals 8 in.

b

ax

d

θ
12 in.

e
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To allow a margin of safety, perhaps we should select d � 6 in.
�

d
Recall that a steady acceleration was assumed in this problem. The car would have to be driven very carefully and smoothly.

This Example shows that:
✓ Not all engineering problems are clearly defined, nor do they have

unique answers.
✓ For constant linear acceleration, we effectively have a hydrostatics

problem, with ‘‘gravity’’ redefined as the vector result of the accel-
eration and the actual gravity.

Example 3.10 Liquid in Rigid-Body Motion with Constant Angular Speed

A cylindrical container, partially filled with liquid, is rotated at a constant angular speed, o,
about its axis as shown in the diagram. After a short time there is no relative motion; the
liquid rotates with the cylinder as if the system were a rigid body. Determine the shape of
the free surface.

GIVEN: A cylinder of liquid in rigid-body rotation with angular speed o about its axis.

FIND: Shape of the free surface.

SOLUTION:

Governing equation:

�rp � r~g � r~a

It is convenient to use a cylindrical coordinate system, r, y, z. Since gr � gy � 0 and gz � �g,
then

� êr
@p
@r

� êy
1
r
@p
@y

� k̂
@p
@z

� �
� k̂rg �rðêrar � êyay � k̂azÞ

Also, ay � az � 0 and ar � �o2r.

;� êr
@p
@r

� êy
1
r
@p
@y

� k̂
@p
@z

� �
� �êrro2r � k̂rg

The component equations are:

@p
@r

� ro2r
@p
@y

� 0
@p
@z

� �rg

From the component equations we see that the pressure is not a function of y; it is a function of r and z only.
Since p � p(r, z), the differential change, dp, in pressure between two points with coordinates (r, y, z) and (r � dr, y,

z � dz) is given by

dp �
@p
@r

�
z

dr �
@p
@z

�
r

dz

Then
dp � ro2rdr � rgdz

To obtain the pressure difference between a reference point (r1, z1), where the pressure is p1, and the arbitrary point
(r, z), where the pressure is p, we must integrateZ p

p1

dp �

Z r

r1

ro2r dr �

Z z

z1

rg dz

p � p1 �
ro2

2
ðr2 � r2

1Þ� rgðz � z1Þ

g

R

ω

g

R

r

z

ω

h1
h0
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Taking the reference point on the cylinder axis at the free surface gives

p1 � patm r1 � 0 z1 � h1

Then

p � patm �
ro2r2

2
�rgðz � h1Þ

Since the free surface is a surface of constant pressure (p � patm), the equation of the free surface is given by

0 �
ro2r2

2
�rgðz � h1Þ

or

z � h1 �
ðorÞ2

2g

The equation of the free surface is a parabaloid of revolution with vertex on the axis at z � h1.
We can solve for the height h1 under conditions of rotation in terms of the original surface height, h0, in the absence of

rotation. To do this, we use the fact that the volume of liquid must remain constant. With no rotation

V--- � pR2h0

With rotation

V--- �

Z R

0

Z z

0
2pr dz dr �

Z R

0
2pzr dr �

Z R

0
2p
�

h1 �
o2r2

2g

�
r dr

V--- � 2p
�

h1
r2

2
�

o2r4

8g

�R

0

� p
�

h1R2 �
o2R4

4g

�

Then

pR2h0 �p
�

h1R2 �
o2R4

4g

�
and h1 � h0 �

ðoRÞ2

4g

Finally,

z � h0 �
ðoRÞ2

4g
�
ðorÞ2

2g
� h0 �

ðoRÞ2

2g

�
1
2

�
r
R

� 	2
�

�
zðrÞ

Note that the expression for z is valid only for h1 � 0. Hence the maximum value of o is given by omax � 2
ffiffiffiffiffiffiffi
gh0
p

=R.

This Example shows:
✓ The effect of centripetal acceleration on the shape of constant pres-

sure lines (isobars).
✓ Because the hydrostatic pressure variation and variation due to

rotation each depend on fluid density, the final free surface shape is
independent of fluid density.
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